Part Number Hot Search : 
TA124E HCT138 MM3082K DS12R887 8S600A 2SK2595 68HC05 ATMEGA32
Product Description
Full Text Search
 

To Download STM32L162QCH6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. march 2016 docid026175 rev 4 1/128 stm32l162qc stm32l162vc-a stm32l162zc stm32l162rc-a ultra-low-power 32b mcu arm ? -based cortex ? -m3, 256kb flash, 32kb sram, 8kb eeprom, lcd, usb, adc, dac, aes datasheet - production data features ? ultra-low-power platform ? 1.65 v to 3.6 v power supply ? -40c to 105c temperature range ? 305 na standby mode (3 wakeup pins) ? 1.15 a standby mode + rtc ? 0.475 a stop mode (16 wakeup lines) ? 1.35 a stop mode + rtc ? 11 a low-power run mode ? 230 a/mhz run mode ? 10 na ultra-low i/o leakage ? 8 s wakeup time ? aes-128 bit encryption ha rdware accelerator ? core: arm ? cortex ? -m3 32-bit cpu ? from 32 khz up to 32 mhz max ? 1.25 dmips/mhz (dhrystone 2.1) ? memory protection unit ? up to 23 capacitive sensing channels ? crc calculation unit, 96-bit unique id ? reset and supply management ? low-power, ultrasafe bor (brownout reset) with 5 selectable thresholds ? ultra-low-power por/pdr ? programmable voltage detector (pvd) ? clock sources ? 1 to 24 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? high speed internal 16 mhz factory- trimmed rc (+/- 1%) ? internal low- power 37 khz rc ? internal multispeed low-power 65 khz to 4.2 mhz ? pll for cpu clock and usb (48 mhz) ? pre-programmed bootloader ? usb and usart supported ? serial wire debug, jtag and trace ? up to 116 fast i/os (102 i/os 5v tolerant), all mappable on 16 external interrupt vectors ? memories ? 256 kb flash memory with ecc ? 32 kb ram ? 8 kb of true eeprom with ecc ? 128-byte backup register ? lcd driver for up to 8x40 segments (contrast adjustment, blinking mode, step-up converter) ? rich analog peripherals (down to 1.8v) ? 2x operational amplifiers ? 12-bit adc 1 msps up to 40 channels ? 12-bit dac 2 ch with output buffers ? 2x ultra-low-power-comparators (window mode and wakeup capability) ? dma controller 12x channels ? 9x peripheral communication interfaces ? 1x usb 2.0 (internal 48 mhz pll) ? 3x usarts ? up to 8x spis (2x i2s, 3x 16 mbit/s) ? 2x i2cs (smbus/pmbus) ? 11x timers: 1x 32-bit, 6x 16-bit with up to 4 ic/oc/pwm channels, 2x 16-bit basic timer, 2x watchdog timers (independent and window) table 1. device summary (1) 1. for stm32l162rc/vc products without 'a' letter as the last character of the sales types please refer to stm32l162xc data sheet. reference part numbers stm32l162qc stm32l162zc stm32l162vc-a stm32l162rc-a STM32L162QCH6 stm32l162zct6 stm32l162vct6a stm32l162rct6a lqfp144 (20 20 mm) lqfp100 (14 14 mm) lqfp64 (10 10 mm) ufbga132 (7 7 mm) www.st.com
contents stm32l162xc/c-a 2/128 docid026175 rev 4 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 arm ? cortex ? -m3 core with mpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22 3.6 gpios (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 dma (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 lcd (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10 adc (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11 dac (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.12 operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.13 ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 26 3.14 system configuration controller and routi ng interface . . . . . . . . . . . . . . . 26 3.15 touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
docid026175 rev 4 3/128 stm32l162xc/c-a contents 4 3.16 aes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.17 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.17.1 general-purpose timers (tim2, tim3, tim4, tim5, tim9, tim10 and tim11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.17.2 basic timers (tim6 and tim7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.3 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.5 window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.1 i2c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.2 universal synchronous/asynchronous receiver transmitter (usart) . . 29 3.18.3 serial peripheral interface (spi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18.4 inter-integrated sound (i2s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18.5 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.19 crc (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 29 3.20 development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.20.1 serial wire jtag debug port (swj-dp) . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.20.2 embedded trace macrocell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1.7 optional lcd power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.8 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.2 embedded reset and power control bloc k characteristics . . . . . . . . . . . 58
contents stm32l162xc/c-a 4/128 docid026175 rev 4 6.3.3 embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.4 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.5 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.6 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.7 internal clock source charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.8 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.9 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.10 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.11 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.12 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.13 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.14 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.15 tim timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.16 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.17 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.18 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.19 operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.20 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.21 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.22 lcd controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1 lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 7.2 lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.3 lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.4 ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
docid026175 rev 4 5/128 stm32l162xc/c-a list of tables 6 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. ultra-low-power stm32l162xc/c-a device features and peripheral counts . . . . . . . . . . . 10 table 3. functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14 table 4. cpu frequency range depending on dynamic voltag e scaling . . . . . . . . . . . . . . . . . . . . . . 15 table 5. functionalities depending on the wo rking mode (from run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 6. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 7. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 8. stm32l162xc/c-a pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 table 9. alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 table 10. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 11. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 12. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 13. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 14. embedded reset and power control block characterist ics. . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 15. embedded internal reference voltage calibration valu es . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 16. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0 table 17. current consumption in run mode, code with data processing running from flash. . . . . . 62 table 18. current consumption in run mode, code wit h data processing running from ram . . . . . . 63 table 19. current consumption in sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 20. current consumption in low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 21. current consumption in low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 22. typical and maximum current consumptions in st op mode . . . . . . . . . . . . . . . . . . . . . . . . 67 table 23. typical and maximum current consumptions in standby mode . . . . . . . . . . . . . . . . . . . . . 69 table 24. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 25. low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 26. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 27. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 28. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 29. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 30. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 31. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 32. msi oscillator ch aracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 33. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 34. ram and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 35. flash memory and dat a eeprom characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 36. flash memory and data eeprom endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 83 table 37. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 38. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 table 39. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 table 40. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 table 41. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 table 42. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 table 43. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 44. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 45. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 46. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 table 47. i 2 c characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
list of tables stm32l162xc/c-a 6/128 docid026175 rev 4 table 48. scl frequency (f pclk1 = 32 mhz, v dd = vdd_i2c = 3.3 v). . . . . . . . . . . . . . . . . . . . . . . . 93 table 49. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 table 50. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 51. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 52. usb: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 53. i2s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 54. adc clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 55. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 56. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 57. maximum source impedance r ain max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 table 58. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 table 59. operational amplifier characteristic s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 60. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 table 61. temperature sensor characteristic s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 9 table 62. comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 table 63. comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 64. lcd controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 table 65. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 113 table 66. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 115 table 67. lqfp64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 118 table 68. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 table 69. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 table 70. stm32l162xc/c-a ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 table 71. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
docid026175 rev 4 7/128 stm32l162xc/c-a list of figures 7 list of figures figure 1. ultra-low-power stm32l162xc/c-a block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 3. stm32l162zc lqfp144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 4. stm32l162qc ufbga132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 5. stm32l162vc-a lqfp100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 6. stm32l162rc-a lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 7. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 8. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 9. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 10. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 11. optional lcd power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 figure 12. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 figure 13. high-speed external clock source ac timing diagra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 14. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 15. hse oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 figure 16. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 17. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 18. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 figure 19. i 2 c bus ac waveforms and measurement ci rcuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 20. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 figure 21. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 figure 22. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 figure 23. usb timings: definition of data signal rise and fa ll time . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 figure 24. i 2 s slave timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 figure 25. i 2 s master timing diag ram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 figure 26. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 figure 27. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 figure 28. maximum dynamic current consumption on v ref+ supply pin during adc conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 figure 29. 12-bit buffered /non-buffered dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 figure 30. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 112 figure 31. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 figure 32. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package top view example . . . . . . 114 figure 33. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 115 figure 34. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 figure 35. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . 117 figure 36. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 118 figure 37. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 figure 38. lqfp64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . 120 figure 39. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package outline . . . . 121 figure 40. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 figure 41. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 figure 42. thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 figure 43. thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
introduction stm32l162xc/c-a 8/128 docid026175 rev 4 1 introduction this datasheet provides the ordering informat ion and mechanical devic e characteristics of the stm32l162xc/c-a ultra-low-power arm ? cortex ? -m3 based microcontroller product line. the stm32l162xc/c-a microcontrollers feature 256 kbytes of flash memory. the ultra-low-power stm32l162xc/c-a devices are available in 4 different package types: from 64 pins to 144 pins. depending on the dev ice chosen, different sets of peripherals are included, the description below gives an over view of the complete range of peripherals proposed in this family. these features make the ultra-low-power stm3 2l162xc/c-a microcontroller family suitable for a wide range of applications: ? medical and handheld equipment ? application control and user interface ? pc peripherals, gaming, gps and sport equipment ? alarm systems, wired and wireless sensors, video intercom ? utility metering this stm32l162xc/c-a datas heet should be read in conj unction with the stm32l1xxxx reference manual (rm0038). the application note ?getting started with stm32l1xxxx hardware development? (an3216) gives a ha rdware implementation overview. both documents are available from the stmicroelectronics website www.st.com . for information on the arm ? cortex ? -m3 core please refer to the arm ? cortex ? -m3 technical reference manual, availabl e from the www.arm.com website. figure 1 shows the general block diagram of the device family.
docid026175 rev 4 9/128 stm32l162xc/c-a description 52 2 description the ultra-low-power stm32l162xc/c-a devices incorporate the connectivity power of the universal serial bus (usb) with the high-performance arm ? cortex ? -m3 32-bit risc core operating at a frequency of 32 mhz (33.3 dmi ps), a memory protection unit (mpu), high- speed embedded memories (flash memory up to 256 kbytes and ram up to 32 kbytes) and an extensive range of enhanced i/os and peripherals connected to two apb buses. the stm32l162xc/c-a devices offer two operational amplifiers, one 12-bit adc, two dacs, two ultra-low-power co mparators, aes, one general- purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases. moreover, the stm32l162xc/c-a devices c ontain standard and advanced communication interfaces: up to two i2cs, three spis, two i2s, three usarts, and an usb. the stm32l162xc/c-a devices offer up to 23 capacitive sensing channels to simply add a touch sensing functionality to any application. they also include a real-time clock and a set of backup registers that remain powered in standby mode. finally, the integrated lcd controller has a bu ilt-in lcd voltage generator that allows to drive up to 8 multiplexed lcds with the co ntrast independent of the supply voltage. the ultra-low-power stm32l162xc/c-a devices operate from a 1.8 to 3.6 v power supply (down to 1.65 v at power down) with bor and from a 1.65 to 3.6 v power supply without bor option. they are available in the -40 to +8 5 c and -40 to +105 c temperature ranges. a comprehensive set of power-saving modes allows the design of low-power applications.
description stm32l162xc/c-a 10/128 docid026175 rev 4 2.1 device overview table 2. ultra-low-power stm32l162xc/c-a device features and peripheral counts peripheral stm32l162rc-a stm32l162vc-a stm32l162qc stm32l162zc flash (kbytes) 256 data eeprom (kbytes) 8 ram (kbytes) 32 aes 1 timers 32 bit 1 general- purpose 6 basic 2 communi- cation interfaces spi 8(3) (1) i 2 s 2 i 2 c 2 usart 3 usb 1 gpios 51 83 109 115 operation amplifiers 2 12-bit synchronized adc number of channels 1 21 1 25 1 40 1 40 12-bit dac number of channels 2 2 lcd (stm32l152xx devices only) com x seg 1 4x32 or 8x28 1 4x44 or 8x40 comparators 2 capacitive sensing channels 23 max. cpu frequency 32 mhz operating voltage 1.8 v to 3.6 v (down to 1.65 v at power-down) with bor option 1.65 v to 3.6 v without bor option operating temperatures ambient operating temperature: -40 c to 85 c / -40 c to 105 c junction temperature: ?40 to + 110 c packages lqfp64 lqfp100 ufbga132 lqfp144 1. 5 spis are usart configured in synchronous mode emulating spi master.
docid026175 rev 4 11/128 stm32l162xc/c-a description 52 2.2 ultra-low-power device continuum the ultra-low-power family offers a large choice of cores and features. from proprietary 8- bit to up to cortex-m3, including the cortex-m0+, the stm32lx series are the best choice to answer the user needs, in terms of ultra-lo w-power features. the stm32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. several bu ilt-in features like lcd drivers, dual-bank memory, low-power run mode , op-amp, aes 128-bit, dac, usb crystal-less and many others will clearly allow to bu ild very cost-optimized app lications by reducing bom. note: stmicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between an y stm8lxxxxx and stm3 2lxxxxx devices and between any of the stm32lx and stm32fx series. thanks to this unprecedented scalability, the old applications can be upgraded to respond to t he latest market features and efficiency demand. 2.2.1 performance all the families incorporate high ly energy-efficient cores with both harvard ar chitecture and pipelined execution: advanced stm8 core fo r stm8l families and ar m cortex-m3 core for stm32l family. in addition specific care for the design architecture has been taken to optimize the ma/dmips and ma/mhz ratios. this allows the ultra-low-power performance to range from 5 up to 33.3 dmips. 2.2.2 shared peripherals stm8l15xxx, stm32l15xxx and stm32l162xx share identical peripherals which ensure a very easy migration from one family to another: ? analog peripherals: adc, dac and comparators ? digital peripherals: rtc and some communication interfaces 2.2.3 common system strategy. to offer flexibility and opt imize performance, the st m8l15xxx, stm32l15xxx and stm32l162xx family uses a common architecture: ? same power supply range from 1.65 v to 3.6 v ? architecture optimized to reach ultra-low consumption both in low-power modes and run mode ? fast startup strategy from low-power modes ? flexible system clock ? ultrasafe reset: same reset strategy including powe r-on reset, power-down reset, brownout reset and programmable voltage detector 2.2.4 features st ultra-low-power continuum al so lies in feature compatibility: ? more than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm ? memory density ranging from 2 to 512 kbytes
functional overview stm32l162xc/c-a 12/128 docid026175 rev 4 3 functional overview figure 1. ultra-low-power stm32l162xc/c-a block diagram 06y9 32:(5 92/75(* elw$'& (;7,7 :.83 :lq:$7&+'2* -7$* 6: )pd[0+] -7', 1-7567 1567 86%)6ghylfh 65$0. [ [elw ,& ;7$/26& 0+] ;7$/n+] ((3520%lw %dfnxslqwhuidfh ,qwhuidfh 57&9 $:8 5&+6, reo ((e 86%65$0% 7udfh&rqwuroohu(70 86$57 63,,6 %dfnxs 5hj ,& 7hps vhqvru 5&06, 6wdqge\ lqwhuidfh :'*. %25%jds 19,& 63, ,) # 9 '' $ 39' *3,23g57& *3,23257' *3,23257( /&'[ elw'$& ) ,) , ,) elw'$& '$&b287dv$) '$&b287dv$) 038 *3&rps 383' 3'5 3'5 7,0(5 7,0(5 *hqhudosxusrvh wlphuv /&'%rrvwhu *3,23257+ 5&/6, *3,23257) *3,23257* 7,0(56 elwv [ [elw 63,,6 75$&(&.75$&('75$&('75$&('75$&(' 6\vwhp &dsvhqv 6xsso\ prqlwrulqj #9''$ #9''$ #9''$ #9''$ 6xsso\prqlwrulqj &dsvhqvlqj *3,23257% *3,23257$ $3%)pd[ 0+] $3%)pd[ 0+] 3// &orfn 0jpw 9,13 9,10 9287 9,13 9,10 9287 57&b287 $+%$3% $+%$3% -7&.6:&/. -7066:'$7 -7'2 dv$) .%352*5$0 .%'$7$ .%%227 #9'' 9 ''&25( 9uhi 0&38 *3'0$fkdqqhov *3'0$fkdqqhov $+%3&/. $3%3&/. +&/. )&/. #9'' 9 '' 9wr9 9vv 26&b,1 26&b287 7$03(5 fkdqqhov fkdqqhov fkdqqhov fkdqqhov 5;7;&76576 6pduw&dugdv$) 5;7;&76576 6pduw&dugdv$) 026,0,626&.166:6&. 0&.6'dv$) 026,0,626&.166:6&. 0&.6'dv$) 6&/6'$ $v$) 6&/6'$60%xv30%xv $v$) 86%b'3 86%b'0 3[ 6(*[ &20[ 23$03 23$03 &203[b,1[ 9''$ 966$ 3$>@ $) 3*>@ 3)>@ 3+>@ 3%>@ 3&_@ 3'>@ 3(>@ 7,0(5 7,0(5 7,0(5 fkdqqhov fkdqqho fkdqqho 026,0,62 6&.166dv$) 5;7;&76576 6pduw&dugdv$) $) 9 ''5()b$'& 9 665()b$'& sexv lexv 'exv %25 ,qw $+%)pd[ 0+] %xv0dwul[06 9 /&'  9wr9 9 /&'  7,0(5 7,0(5 7,0(5 #9'' 86$57 86$57 26&b,1 26&b287 $(6
docid026175 rev 4 13/128 stm32l162xc/c-a functional overview 52 3.1 low-power modes the ultra-low-power stm32l162xc/c-a devices support dynamic voltage scaling to optimize its power consumption in run mode. the voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system?s maximum operating frequency and the external voltage supply. there are three power consumption ranges: ? range 1 (v dd range limited to 1.71 v - 3.6 v), with the cpu running at up to 32 mhz ? range 2 (full v dd range), with a maximum cpu frequency of 16 mhz ? range 3 (full v dd range), with a maximum cpu frequency limited to 4 mhz (generated only with the multispeed intern al rc oscillator clock source) seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: ? sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. sleep mode power consumption at 16 mhz is about 1 ma with all peripherals off. ? low-power run mode this mode is achieved with the multispeed internal (msi) rc os cillator set to the minimum clock (131 khz), execution from sram or flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. in low-power run mode, the clock frequency and the number of enabled peripherals are both limited. ? low-power sleep mode this mode is achieved by entering sleep mode with the internal voltage regulator in low-power mode to minimize the regulator?s operating current. in low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 khz. when wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. ? stop mode with rtc stop mode achieves the lowest power consumption while retaining the ram and register contents and real time clock. all clocks in the v core domain are stopped, the pll, msi rc, hsi rc and hse crystal oscillato rs are disabled. the lse or lsi is still running. the voltage regulator is in the low-power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the rtc alarm(s), the usb wakeup, the rtc tamper events, the rtc timestamp event or the rtc wakeup.
functional overview stm32l162xc/c-a 14/128 docid026175 rev 4 ? stop mode without rtc stop mode achieves the lowest power consumption while retaining the ram and register contents. all clocks are stopped, the pll, msi rc, hsi and lsi rc, lse and hse crystal oscillators are disabled. the vo ltage regulator is in the low-power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). it can also be wakened by the usb wakeup. ? standby mode with rtc standby mode is used to achieve the lowest power consumption and real time clock. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi rc and hse crystal oscillators are also switched off. the lse or lsi is still running. after entering standby mode, the ram and register contents are lost except fo r registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin), an iwdg reset, a rising edge on one of the three wkup pins, rtc alarm (alarm a or alarm b), rtc tamper event, rtc timestamp event or rtc wakeup event occurs. ? standby mode without rtc standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi and lsi rc, hse and lse crystal os cillators are also switched off. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iw dg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin) or a rising edge on one of the three wkup pin occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped automatically by entering stop or standby mode. table 3. functionalities depending on the operating power supply range functionalities depending on the operating power supply range operating power supply range dac and adc operation usb dynamic voltage scaling range i/o operation v dd = v dda = 1.65 to 1.71 v not functional not functional range 2 or range 3 degraded speed performance v dd =v dda = 1.71 to 1.8 v (1) not functional not functional range 1, range 2 or range 3 degraded speed performance v dd =v dda = 1.8 to 2.0 v (1) conversion time up to 500 ksps not functional range 1, range 2 or range 3 degraded speed performance
docid026175 rev 4 15/128 stm32l162xc/c-a functional overview 52 v dd =v dda = 2.0 to 2.4 v conversion time up to 500 ksps functional (2) range 1, range 2 or range 3 full speed operation v dd =v dda = 2.4 to 3.6 v conversion time up to 1 msps functional (2) range 1, range 2 or range 3 full speed operation 1. cpu frequency changes from initial to final must respect ?f cpu initial < 4*f cpu final? to limit v core drop due to current consumption peak when frequency increases. it must also res pect 5 s delay between two changes. for example to switch from 4.2 mhz to 32 mhz, the user can switch from 4.2 mhz to 16 mhz, wait 5 s, then switch from 16 mhz to 32 mhz. 2. should be usb compliant from i/o voltage standpoint, the minimum v dd is 3.0 v. table 3. functionalities depending on the operating power supply range (continued) functionalities depending on the operating power supply range operating power supply range dac and adc operation usb dynamic voltage scaling range i/o operation table 4. cpu frequency range depending on dynamic voltage scaling cpu frequency range dynamic voltage scaling range 16 mhz to 32 mhz (1ws) 32 khz to 16 mhz (0ws) range 1 8 mhz to 16 mhz (1ws) 32 khz to 8 mhz (0ws) range 2 2.1mhz to 4.2 mhz (1ws) 32 khz to 2.1 mhz (0ws) range 3
functional overview stm32l162xc/c-a 16/128 docid026175 rev 4 table 5. functionalities depending on the working mode (from run/active down to standby) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability cpu y -- y -- -- -- -- -- flash y y y y -- -- -- -- ram y y y y y -- -- -- backup registers y y y y y -- y -- eeprom y y y y y -- -- -- brown-out rest (bor) yyyyyyy-- dma y y y y -- -- -- -- programmable voltage detector (pvd) yyyyyyy-- power on reset (por) yyyyyyy-- power down rest (pdr) yyyyy--y-- high speed internal (hsi) y y -- -- -- -- -- -- high speed external (hse) y y -- -- -- -- -- -- low speed internal (lsi) yyyyy--y-- low speed external (lse) yyyyy--y-- multi-speed internal (msi) y y y y -- -- -- -- inter-connect controller y y y y -- -- -- -- rtc y y y y y y y -- rtc tamper y y y y y y y y auto wakeup (awu) yyyyyyyy lcd y y y y y -- -- -- usb y y -- -- -- y -- -- usart y y y y y (1) -- -- spi y y y y -- -- -- -- i2c y y y y -- (1) -- --
docid026175 rev 4 17/128 stm32l162xc/c-a functional overview 52 3.2 arm ? cortex ? -m3 core with mpu the arm ? cortex ? -m3 processor is the industry lead ing processor for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm ? cortex ? -m3 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. adc y y -- -- -- -- -- -- dac y y y y y -- -- -- tempsensor y y y y y -- -- -- op amp y y y y y -- -- -- comparators y y y y y y -- -- 16-bit and 32-bit timers y y y y -- -- -- -- iwdg y y y y y y y y wwdg y y y y -- -- -- -- touch sensing y y -- -- -- -- -- -- systic timer y y y y -- -- -- gpios y y y y y y -- 3 pins wakeup time to run mode 0 s 0.4 s 3 s 46 s < 8 s 58 s consumption v dd =1.8 to 3.6 v (typ) down to 230 a/mhz (from flash) down to 43 a/mhz (from flash) down to 11 a down to 4.4 a 0.475 a (no rtc) v dd =1.8v 0.305 a (no rtc) v dd =1.8v 1.1 a (with rtc) v dd =1.8v 0.82 a (with rtc) v dd =1.8v 0.475 a (no rtc) v dd =3.0v 0.305 a (no rtc) v dd =3.0v 1.35 a (with rtc) v dd =3.0v 1.15 a (with rtc) v dd =3.0v 1. the startup on communication line wakes the cpu which wa s made possible by an exti, th is induces a delay before entering run mode. table 5. functionalities depending on the working mode (from run/active down to standby) (continued) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability
functional overview stm32l162xc/c-a 18/128 docid026175 rev 4 the memory protection unit (mpu) improves system reliability by defining the memory attributes (such as read/write access permissions ) for different memory regions. it provides up to eight different regions and an optional predefined background region. owing to its embedded arm core, the stm32l 162xc/c-a devices are compatible with all arm tools and software. nested vectored interrupt controller (nvic) the ultra-low-power stm32l162xc/c-a devi ces embed a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of arm ? cortex ? -m3) and 16 priority levels. ? closely coupled nvic gives low-latency interrupt processing ? interrupt entry vector table address passed directly to the core ? closely coupled nvic core interface ? allows early processing of interrupts ? processing of late arriving , higher-priority interrupts ? support for tail-chaining ? processor state automatically saved ? interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 reset and supply management 3.3.1 power supply schemes ? v dd = 1.65 to 3.6 v: external power supply fo r i/os and the internal regulator. provided externally through v dd pins. ? v ssa , v dda = 1.65 to 3.6 v: external analog power supplies for adc, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 1.8 v when the adc is used). v dda and v ssa must be connected to v dd and v ss , respectively. 3.3.2 power supply supervisor the device has an integrated zeropower power-on reset (por)/power-down reset (pdr) that can be coupled with a brownout reset (bor) circuitry. the device exists in two versions: ? the version with bor activated at power-on operates between 1.8 v and 3.6 v. ? the other version without bor oper ates between 1.65 v and 3.6 v. after the v dd threshold is reached (1.65 v or 1.8 v depending on the bor which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the bor permanently: in this case, the v dd min value becomes 1.65 v (whatever the version, bo r active or not, at power-on). when bor is active at power-on, it ensures proper operation starting from 1.8 v whatever the power ramp-up phase before it reaches 1.8 v. when bor is not active at power-up, the
docid026175 rev 4 19/128 stm32l162xc/c-a functional overview 52 power ramp-up should guarantee that 1.65 v is reached on v dd at least 1 ms after it exits the por area. five bor thresholds are available thro ugh option bytes, starting from 1.8 v to 3 v. to reduce the power consumption in stop mode, it is possible to automatically switch off the internal reference voltage (v refint ) in stop mode. the device remains in reset mode when v dd is below a specified threshold, v por/pdr or v bor , without the need for any external reset circuit. note: the start-up time at power-on is typically 3.3 ms when bor is active at power-up, the start- up time at power-on can be decreased down to 1 ms typically for device s with bor inactive at power-up. the device features an embedded programmable voltage detector (pvd) that monitors the v dd /v dda power supply and compares it to the v pvd threshold. this pvd offers 7 different levels between 1.85 v and 3.05 v, chosen by software, with a step around 200 mv. an interrupt can be generated when v dd /v dda drops below the v pvd threshold and/or when v dd /v dda is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. 3.3.3 voltage regulator the regulator has three operation modes: main (mr), low-power (lpr) and power down. ? mr is used in run mode (nominal regulation) ? lpr is used in the low-power run, low-power sleep and stop modes ? power down is used in standby mode. the regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and ram are lost except for the st andby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). 3.3.4 boot modes at startup, boot pins are used to select one of three boot options: ? boot from flash memory ? boot from system memory ? boot from embedded ram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1, usart2 or usb. see applic ation note ?stm32 microcontroller system memory boot mode? (an2606) for details.
functional overview stm32l162xc/c-a 20/128 docid026175 rev 4 3.4 clock management the clock controller distributes the clocks coming from different oscillators to the core and the peripherals. it also manages clock gating for low-power modes and ensures clock robustness. it features: ? clock prescaler : to get the best trade-off between speed and current consumption, the clock frequency to the cpu and peripherals can be adjusted by a programmable prescaler. ? safe clock switching : clock sources can be changed safely on the fly in run mode through a configuration register. ? clock management : to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. ? system clock source : three different clock sources can be used to drive the master clock sysclk: ? 1-24 mhz high-speed external crystal (hse), that can supply a pll ? 16 mhz high-speed internal rc oscillator (h si), trimmable by software, that can supply a pll ? multispeed internal rc oscilla tor (msi), trimmable by soft ware, able to generate 7 frequencies (65 khz, 131 khz, 262 khz, 524 khz, 1.05 mhz, 2.1 mhz, 4.2 mhz). when a 32.768 khz clock source is available in the system (lse), the msi frequency can be trimmed by software down to a 0.5% accuracy. ? auxiliary clock source : two ultra-low-power clock sources that can be used to drive the lcd controller and the real-time clock: ? 32.768 khz low-speed external crystal (lse) ? 37 khz low-speed internal rc (lsi), also used to drive the independent watchdog. the lsi clock can be measured using the high-speed internal rc oscillator for greater precision. ? rtc and lcd clock sources: the lsi, lse or hse sources can be chosen to clock the rtc and the lcd, whatever the system clock. ? usb clock source: the embedded pll has a dedicated 48 mhz clock output to supply the usb interface. ? startup clock : after reset, the microcontroller restarts by default with an internal 2 mhz clock (msi). the prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. ? clock security system (css): this feature can be enabled by software. if a hse clock failure occurs, the master cl ock is automatically switched to hsi and a software interrupt is generated if enabled. ? clock-out capability (mco: microcontroller clock output): it outputs one of the internal clocks for external use by the application. several prescalers allow the configuration of the ahb fr equency, each apb (apb1 and apb2) domains. the maximum frequency of the ahb and the apb domains is 32 mhz. see figure 2 for details on the clock tree.
docid026175 rev 4 21/128 stm32l162xc/c-a functional overview 52 figure 2. clock tree -36 ,3)2# ,3%/3# (3)2# (3% /3# 6 6 $$#/2% 6 levelshifters levelshifters 0,, 8     6 levelshifters ,3%tempo -(zclock detector 6 ,3 7atchdog ck?pllin source control #lock 7atchdog enable 24#enable ck?hsi ck?hse (3%presentornot ,3)tempo ck?pll !(" prescaler    !0"      !0"      ck?usb6co6comustbeat-( z  #+?4)-393 #+?#05 #+?&#,+ #+?072 #+?53" #+?4)-4'/ #+?!0" #+?!0" usbenandnotdeepsleep timerenandnotdeepsleep apbperiphenandnotdeepsleep apbperiphenandnotdeepsleep notsleepor deepsleep notsleepor deepsleep notdeepsleep notdeepsleep 3tandbysuppliedvoltagedomain 3ystem clock -#/ if!0"presc x else x     ck?lse #+?,#$    -(z 6 $$#/2% 6 $$#/2% 6 $$#/2%      ,#$enable -3)2# 6 6 $$#/2% levelshifters ck?msi ck?lsi #+?!$# !$#enable ,3 ,3 ,3 ,3 ,3 ,3     prescaler prescaler 2adio3leep4imer 24# 2adio3leep4imerenable
functional overview stm32l162xc/c-a 22/128 docid026175 rev 4 3.5 low-power real-time cl ock and backup registers the real-time clock (rtc) is an independent bc d timer/counter. dedica ted registers contain the sub-second, second, minute, hour (12/24 h our), week day, date, month, year, in bcd (binary-coded decimal) format. correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. the rtc provides two programmable alarms and programmable periodic interrupts with wakeup from stop and standby modes. the programmable wakeup time ranges from 120 s to 36 hours. the rtc can be calibrated with an external 512 hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. the rtc can also be automatically corrected with a 50/60hz stable powerline. the rtc calendar can be updated on the fly down to sub second precision, which enables network system synchronization. a time stamp can record an external event occurrence, and generates an interrupt. there are thirty-two 32-bit backup registers pr ovided to store 128 bytes of user application data. they are cleared in case of tamper detection. three pins can be used to detect tamper event s. a change on one of these pins can reset backup register and generate an interrupt. to prevent false tamper event, like esd event, these three tamper inputs can be digitally filtered. 3.6 gpios (general-pur pose inputs/outputs) each of the gpio pins can be configured by so ftware as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated afio registers. all gpios are high current capable. the alternate function configuration of i/os can be locked if needed following a specific sequence in order to avoid spurious writing to the i/o registers. the i/o controller is connected to the ahb with a toggling speed of up to 16 mhz. external interrupt/event controller (exti) the external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal apb2 clock period. up to 115 gpios can be connected to the 16 external interrupt lines. the 8 other lines are connected to rtc, pvd, usb, comparator events or capacitive sensing acquisition.
docid026175 rev 4 23/128 stm32l162xc/c-a functional overview 52 3.7 memories the stm32l162xc/c-a devices have the following features: ? 32 kbytes of embedded ram accessed (rea d/write) at cpu clock speed with 0 wait states. with the enhanced bus matrix, op erating the ram does not lead to any performance penalty during accesses to th e system bus (ahb and apb buses). ? the non-volatile memory is divided into three arrays: ? 256 kbytes of embedded flash program memory ? 8 kbytes of data eeprom ? options bytes the options bytes are used to write-protec t or read-out protect the memory (with 4 kbytes granularity) and/or readout-prot ect the whole memory with the following options: ? level 0: no readout protection ? level 1: memory readout protection, th e flash memory cannot be read from or written to if either debug features ar e connected or boot in ram is selected ? level 2: chip readout protection, debug features (arm cortex-m3 jtag and serial wire) and boot in ram selection disabled (jtag fuse) the whole non-volatile memory embeds the error correction code (ecc) feature. 3.8 dma (direct memory access) the flexible 12-channel, general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: aes, spi, i 2 c, usart, general-purpose timers, dac and adc.
functional overview stm32l162xc/c-a 24/128 docid026175 rev 4 3.9 lcd (liquid crystal display) the lcd drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels. ? internal step-up converter to guarantee functi onality and contrast control irrespective of v dd . this converter can be deactivated, in which case the v lcd pin is used to provide the voltage to the lcd ? supports static, 1/2, 1/3, 1/4 and 1/8 duty ? supports static, 1/2, 1/3 and 1/4 bias ? phase inversion to reduce power consumption and emi ? up to 8 pixels can be programmed to blink ? unneeded segments and common pins can be used as general i/o pins ? lcd ram can be updated at any time owing to a double-buffer ? the lcd controller can operate in stop mode 3.10 adc (analog-to-digital converter) a 12-bit analog-to-digital converters is em bedded into stm32l162xc/c-a devices with up to 40 external channels, performing conversions in single-shot or scan mode. in scan mode, automatic conversion is performed on a selected group of analog inputs with up to 28 external channels in a group. the adc can be served by the dma controller. an analog watchdog feature allows very precis e monitoring of the converted voltage of one, some or all scanned channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the general-purpose timers (timx) can be internally connected to the adc start triggers, to allow the application to synchronize a/d conversions and timers. an injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. the adc includes a specific low-power mode. the converter is able to operate at maximum speed even if the cpu is operating at a very low frequency and has an auto-shutdown function. the adc?s runtime and analog front- end current consumpti on are thus minimized whatever the mcu operating mode. 3.10.1 temperature sensor the temperature sensor (ts) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connec ted to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the te mperature sensor factory calibration data are
docid026175 rev 4 25/128 stm32l162xc/c-a functional overview 52 stored by st in the system memory area, accessible in read-only mode. see table 60: temperature sensor calibration values . 3.10.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally con nected to the adc_in17 input channel. it enables accurate monitoring of the v dd value (when no external voltage, vref+, is available for adc). the precise voltage of v refint is individually measured for each part by st during production test and stored in the s ystem memory area. it is accessible in read- only mode. see table 15: embedded internal reference voltage calibration values . 3.11 dac (digital-to-analog converter) the two 12-bit buffered dac channels can be used to convert two digital signals into two analog voltage signal outputs. the chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. this dual digital interface supports the following features: ? two dac converters: one for each output channel ? 8-bit or 12-bit monotonic output ? left or right data alignment in 12-bit mode ? synchronized update capability ? noise-wave generation ? triangular-wave generation ? dual dac channels, independent or simultaneous conversions ? dma capability for each channel (i ncluding the unde rrun in terrupt) ? external triggers for conversion ? input reference voltage v ref+ eight dac trigger inputs are used in the stm32l162xc/c-a devices. the dac channels are triggered through the timer update output s that are also connec ted to different dma channels. 3.12 operational amplifier the stm32l162xc/c-a devices embed two operatio nal amplifiers with external or internal follower routing capability (or ev en amplifier and filter capab ility with external components). when one operational amplifier is selected, on e external adc channel is used to enable output measurement. the operational amplifiers feature: ? low input bias current ? low offset voltage ? low-power mode ? rail-to-rail input
functional overview stm32l162xc/c-a 26/128 docid026175 rev 4 3.13 ultra-low-power comparators and reference voltage the stm32l162xc/c-a devices embed two comparators sharing the same current bias and reference voltage. the reference voltage can be internal or external (coming from an i/o). ? one comparator with fixed threshold ? one comparator with rail-to-rail inputs, fast or slow mode. the threshold can be one of the following: ? dac output ? external i/o ? internal reference voltage (v refint ) or a sub-multiple (1/4, 1/2, 3/4) both comparators can wake up from stop mode, and be combined into a window comparator. the internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 a typical). 3.14 system configur ation controller an d routing interface the system configuration cont roller provides the capabilit y to remap some alternate functions on different i/o ports. the highly flexible routing inte rface allows the application firm ware to control the routing of different i/os to the tim2, tim3 and tim4 timer in put captures. it also controls the routing of internal analog signals to adc1, comp1 and comp2 and the internal reference voltage v refint . 3.15 touch sensing the stm32l162xc/c-a devices provide a simple solution for adding capacitive sensing functionality to any application. these device s offer up to 23 capacitive sensing channels distributed over 10 analog i/o groups. both software and timer capacitive sensing acquisition modes are supported. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic ...). the capacitive variation introduced by the finger (or any conduct ive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor unt il the voltage across this capa citor has reached a specific threshold. the capacitive sensing acquisition only requires few external components to operate. this acquisition is managed directly by the gpios, timers and analog i/o groups (see section 3.14: system configuration controller and routing interface ). reliable touch sensing functionality can be quickly and easily implemented using the free stm32l1xx stmtouch touch sensing firmware library. 3.16 aes the aes hardware accelerator ca n be used to encrypt and decrypt data using the aes
docid026175 rev 4 27/128 stm32l162xc/c-a functional overview 52 algorithm (compatible with fips pub 197, 2001 nov 26). ? key scheduler ? key derivation for decryption ? 128-bit data block processed ? 128-bit key length ? 213 clock cycles to encrypt/decrypt one 128-bit block ? electronic codebook (ecb), cypher block chaining (cbc), and counter mode (ctr) supported by hardware. aes data flow can be served by 2ch (d in /d out ) of the dma2 controller 3.17 timers and watchdogs the ultra-low-power stm32l162xc/c-a devices include seven general-purpose timers, two basic timers, and two watchdog timers. table 6 compares the features of the general-purpose and basic timers. 3.17.1 general-purpose timers (tim2, tim3, tim4, tim5, tim9, tim10 and tim11) there are seven synchronizable general-purpose timers embedded in the stm32l162xc/c-a devices (see table 6 for differences). tim2, tim3, tim4, tim5 tim2, tim3, tim4 are based on 16-bit auto-rel oad up/down counter. tim5 is based on a 32- bit auto-reload up/down counter. they incl ude a 16-bit prescaler. they feature four independent channels each for input capture/output compare, pwm or one-pulse mode output. this gives up to 16 input captures/o utput compares/pwms on the largest packages. tim2, tim3, tim4, tim5 genera l-purpose timers can work to gether or with the tim10, tim11 and tim9 general-purpose timers via th e timer link feature for synchronization or table 6. timer feature comparison timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs tim2, tim3, tim4 16-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim5 32-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim9 16-bit up, down, up/down any integer between 1 and 65536 no 2 no tim10, tim11 16-bit up any integer between 1 and 65536 no 1 no tim6, tim7 16-bit up any integer between 1 and 65536 yes 0 no
functional overview stm32l162xc/c-a 28/128 docid026175 rev 4 event chaining. their counter can be frozen in debug mode. any of the general-purpose timers can be used to generate pwm outputs. tim2, tim3, tim4, tim5 all have in dependent dma request generation. these timers are capable of handling quadrat ure (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. tim10, tim11 and tim9 tim10 and tim11 are based on a 16-bit auto-r eload upcounter. tim9 is based on a 16-bit auto-reload up/down counter. they include a 16 -bit prescaler. tim10 and tim11 feature one independent channel, whereas tim9 has two in dependent channels for input capture/output compare, pwm or one-pulse mode output. they can be synchronized with the tim2, tim3, tim4, tim5 full-featured general-purpose timers. they can also be used as simple time bases and be clocked by the lse clock source (32.768 khz) to provide time bases independent from the main cpu clock. 3.17.2 basic timers (tim6 and tim7) these timers are mainly used for dac trigger g eneration. they can also be used as generic 16-bit time bases. 3.17.3 systick timer this timer is dedicated to the os, but could also be used as a standard downcounter. it is based on a 24-bit downcounter with autore load capability and a programmable clock source. it features a maskable system interr upt generation when the counter reaches 0. 3.17.4 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 37 khz internal rc and, as it operates independently of the main clock, it can operate in stop and stan dby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. it is hardware- or software-configurable through the option bytes. the counter can be frozen in debug mode. 3.17.5 window watchdog (wwdg) the window watchdog is based on a 7-bit downcounter that can be set as free-running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrupt capab ility and the counter can be frozen in debug mode. 3.18 communication interfaces 3.18.1 i2c bus up to two i2c bus interfaces can operate in multimaster and slave mo des. they can support standard and fast modes.
docid026175 rev 4 29/128 stm32l162xc/c-a functional overview 52 they support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. a hardware crc generation/verification is embedded. they can be served by dma and they support sm bus 2.0/pm bus. 3.18.2 universal synchronous/asynchr onous receiver tran smitter (usart) the three usart interfaces are able to commun icate at speeds of up to 4 mbit/s. they support irda sir endec and ha ve lin master/slave capabilit y. the three usarts provide hardware management of the cts and rts signals and are iso 7816 compliant. all usart interfaces can be served by the dma controller. 3.18.3 serial peripheral interface (spi) up to three spis are able to communicate at up to 16 mbits/s in slave and master modes in full-duplex and half-duplex communication mo des. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification support s basic sd card/mmc modes. the spis can be served by the dma controller. 3.18.4 inter-integrated sound (i 2 s) two standard i2s interfaces (multiplexed with spi2 and spi3) are available. they can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. audio sampling frequencies from 8 khz up to 192 khz are supported. when either or both of th e i2s interfaces is/are configured in master mode, the master clock can be output to the external dac/codec at 256 times the sampling frequency. the i2ss can be served by the dma controller. 3.18.5 universal se rial bus (usb) the stm32l162xc/c-a devices embed a usb device peripheral compatible with the usb full-speed 12 mbit/s. the usb interface implements a full-speed (12 mbit/s) function interface. it has software-configurable endpo int setting and supports suspend/resume. the dedicated 48 mhz clock is generated from the internal main pll (the clock source must use a hse crystal oscillator). 3.19 crc (cyclic redundancy check) calculation unit the crc (cyclic redundancy check) calculation unit is used to get a crc code from a 32-bit data word and a fixed generator polynomial. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location.
functional overview stm32l162xc/c-a 30/128 docid026175 rev 4 3.20 development support 3.20.1 serial wire jt ag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag jtms and jtck pins are shared with swdat and swclk, respectively, and a specific sequence on the jtms pin is us ed to switch between jtag-dp and sw-dp. the jtag port can be permanently disabled with a jtag fuse. 3.20.2 embedded trace macrocell? the arm ? embedded trace macrocell provides a greater visibility of the instruction and data flow inside the cpu core by streaming compressed data at a very high rate from the stm32l162xc/c-a device through a small number of etm pins to an external hardware trace port analyzer (tpa) device. the tpa is connected to a host computer using usb, ethernet, or any other high-speed channel. real -time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. tpa hardware is commercially available from common development tool vendors. it operates with third party debugger software tools.
docid026175 rev 4 31/128 stm32l162xc/c-a pin descriptions 52 4 pin descriptions figure 3. stm32l162zc lqfp144 pinout 1. this figure shows the package top view. -36 6 $$? 6 33? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0' 6 $$? 6 33? 0' 0' 0' 0' 0' 0' 0$ 0$ 6 $$? 6 33? 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0!   0!   0% 6 $$? 0% 6 33? 0% 0% 0!   0% 7+50 0!   0!   0# 7+50 0!   0# /3#?). 0!  0# /3#?/54 0!  0& 0# 0& 0# 0& 0# 0& 0# 0& 6 $$? 0& 6 33? 6 33? 0' 6 $$? 0' 0& 0' 0& 0' 0& 0' 0& 0' 0& 0' /3#?). 0$ /3#?/54 0$ .234 6 $$? 0# 6 33? 0# 0$ 0# 0$ 0# 0$ 6 33! 0$ 6 2%& 0$ 6 2%& 0$ 6 $$! 0" 0!  7 + 5 0  0" 0!  0" 0!  0" 0!  6 33? 6 $$? 0!  0!  0!  0!  0# 0# 0" 0" 0" 0& 0& 633? 6 $$? 0& 0& 0& 0' 0' 0% 0% 0% 6 33? 6 $$? 0% 0% 0% 0% 0% 0% 0" 0" 6 33? 6 $$?                                                                                                     ,1&0                                             6 ,#$ 0(
pin descriptions stm32l162xc/c-a 32/128 docid026175 rev 4 figure 4. stm32l16 2qc ufbga132 ballout 1. this figure shows the package top view. -36 ! " % $ # & ' ( 0% 0# /3# ?/54 0# /3# ?). 0% 0# 0% 0% 0% 0% 7+50 6,#$ 633? 6$$? .234 0" 0" 0% 633? 0& 0& 6$$? "//4 0" 633? 0$ 0" 0" 0$ 0$ 0" 0$ 0' 0' 0' 0&        0# 7+50 0( /3#?). 0( /3#? /54 6$$? 6$$? 0& 0& 633? * 633! 0# 0# 0!  0!  0& 0& 0" 0$ 0$ 633? 6$$? 0! 0$ 0' 0' 0' 0! 0# 0# 0$ 0! 0# 0! 0! 0( 6$$? 0$ 0# 0# 0! 6$$? 0$ 633? 0!  0# 633? 0$ 0' 0' 0' 0' 0!  0# 0' 0& 0& 0$ 0$ 0$ 62%& 0# 0! 7+50 0!  0!  0!  0!  0# 0& 0" 0& 0% /0!-0 ?6).- 0# 6$$! 0!  /0!-0 ?6).- /0!-0 ?6).- 0" 0" 0% 0$ 0% 0$ 0% 0" 0" 0" 0" 0" 0" 0% 0% 0% 0% 0% + , - 0& 0& 0& 0&     
docid026175 rev 4 33/128 stm32l162xc/c-a pin descriptions 52 figure 5. stm32l162vc-a lqfp100 pinout 1. this figure shows the package top view.                                                                            6$$? 633? 0( 0!   0!   0!   0!   0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0!  633? 6$$? 0!  0!  0!  0!  0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$? 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0!                          0% 0% 0% 0% 0% 7+50 6 ,#$ 0# 7+50 0# /3#?). 0# /3#?/54 633? 6$$? 0( /3#?). 0( /3#?/54 .234 0# 0# 0# 0# 633! 62%& 62%& 6$$! 0!  7 + 5 0  0!  0!  aic ,1&0 0!  0! 
pin descriptions stm32l162xc/c-a 34/128 docid026175 rev 4 figure 6. stm32l162rc-a lqfp64 pinout 1. this figure shows the package top view.                                                                  6 ,#$ 0# 7+50 0# /3#?). 0# /3#?/54 0( /3#?). 0( /3#?/54 .234 0# 0# 0# 0# 633! 6$$! 0!  7 + 5 0  0!  0!  6$$? 633? 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0# 0# 0# 0!   0!   6$$? 633?  0!   0!   0!   0!   0!  0!  0# 0# 0# 0# 0" 0" 0" 0" 0!  633? 6$$? 0!  0!  0!  0!  0# 0# 0" 0" 0" 0" 0" 633? 6$$? ,1&0 aic
docid026175 rev 4 35/128 stm32l162xc/c-a pin descriptions 52 table 7. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input only pin i/o input / output pin i/o structure ft 5 v tolerant i/o tc standard 3.3 v i/o b dedicated boot0 pin rst bidirectional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabled through peripheral registers table 8. stm32l162xc/c-a pin definitions pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions 1 b2 1 - - pe2 i/o ft pe2 tim3_etr/lcd_seg38/ traceclk - 2 a1 2 - - pe3 i/o ft pe3 tim3_ch1/lcd_seg39/ traced0 - 3 b1 3 - - pe4 i/o ft pe4 tim3_ch2/traced1 - 4 c2 4 - - pe5 i/o ft pe5 tim9_ch1/traced2 - 5d25-- pe6- wkup3 i/o ft pe6 tim9_ch2/traced3 wkup3/ rtc_tamp3 6e261c6 v lcd (3) s- v lcd --
pin descriptions stm32l162xc/c-a 36/128 docid026175 rev 4 7c172c8 pc13- wkup2 i/o ft pc13 - wkup2/ rtc_tamp1/ rtc_ts/ rtc_out 8d183b8 pc14- osc32_in (4) i/o tc pc14 - osc32_in 9e194b7 pc15- osc32_out i/o tc pc15 - osc32_out 10 d6 - - - pf0 i/o ft pf0 - - 11 d5 - - - pf1 i/o ft pf1 - - 12 d4 - - - pf2 i/o ft pf2 - - 13 e4 - - - pf3 i/o ft pf3 - - 14 f3 - - - pf4 i/o ft pf4 - - 15 f4 - - - pf5 i/o ft pf5 - - 16 f2 10 - - v ss_5 s- v ss_5 -- 17 g2 11 - - v dd_5 s- v dd_5 -- 18 g3 - - - pf6 i/o ft pf6 tim5_ch1/tim5_etr adc_in27 19 g4 - - - pf7 i/o ft pf7 tim5_ch2 adc_in28/ comp1_inp 20 h4 - - - pf8 i/o ft pf8 tim5_ch3 adc_in29/ comp1_inp 21 j6 - - - pf9 i/o ft pf9 tim5_ch4 adc_in30/ comp1_inp 22 - - - - pf10 i/o ft pf10 - adc_in31/ comp1_inp 23 f1 12 5 d8 ph0- osc_in (5) i/o tc ph0 - osc_in 24 g1 13 6 d7 ph1- osc_out (5) i/o tc ph1 - osc_out 25 h2 14 7 c7 nrst i/o rst nrst - - 26 h1 15 8 e8 pc0 i/o ft pc0 lcd_seg18 adc_in10/ comp1_inp table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
docid026175 rev 4 37/128 stm32l162xc/c-a pin descriptions 52 27 j2 16 9 f8 pc1 i/o ft pc1 lcd_seg19 adc_in11/ comp1_inp 28 - 17 10 d6 pc2 i/o ft pc2 lcd_seg20 adc_in12/ comp1_inp - j3 - - - pc2 i/o ft pc2 lcd_seg20 adc_in12/ comp1_inp -k1--- i - - - 29 k2 18 11 f7 pc3 i/o tc pc3 lcd_seg21 adc_in13/ comp1_inp/ 30 j1 19 12 e7 v ssa s- v ssa -- 31 - 20 - - v ref- s- v ref- -- 32 l1 21 - - v ref+ s- v ref+ -- 33 m1 22 13 g8 v dda s- v dda -- 34 l2 23 14 f6 pa0-wkup1 i/o ft pa0 tim2_ch1_etr/ tim5_ch1/ usart2_cts wkup1/ rtc_tamp2/ adc_in0/ comp1_inp 35 m2 24 15 e6 pa1 i/o ft pa1 tim2_ch2/tim5_ch2/ usart2_rts/ lcd_seg0 adc_in1/ comp1_inp/ opamp1_vinp 36 - 25 16 h8 pa2 i/o ft pa2 tim2_ch3/tim5_ch3/ tim9_ch1/ usart2_tx/lcd_seg1 adc_in2/ comp1_inp/ opamp1_vinm - k3 - - - pa2 i/o ft pa2 tim2_ch3/tim5_ch3/ tim9_ch1/ usart2_tx/lcd_seg1 adc_in2/ comp1_inp -m3- -- opamp1_vi nm itc opamp1_ vinm -- 37 l3 26 17 g7 pa3 i/o tc pa3 tim2_ch4/tim5_ch4/ tim9_ch2/ usart2_rx/lcd_seg2 adc_in3/ comp1_inp/ opamp1_vout 38 - 27 18 f5 v ss_4 s- v ss_4 -- table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
pin descriptions stm32l162xc/c-a 38/128 docid026175 rev 4 39 - 28 19 g6 v dd_4 s- v dd_4 -- 40 j4 29 20 h7 pa4 i/o tc pa4 spi1_nss/spi3_nss/ i2s3_ws/usart2_ck adc_in4/ dac_out1/ comp1_inp 41 k4 30 21 e5 pa5 i/o tc pa5 tim2_ch1_etr/ spi1_sck adc_in5/ dac_out2/ comp1_inp 42 l4 31 22 g5 pa6 i/o ft pa6 tim3_ch1/tim10_ch1/ spi1_miso/ lcd_seg3 adc_in6/ comp1_inp/ opamp2_vinp 43 - 32 23 g4 pa7 i/o ft pa7 tim3_ch2/tim11_ch1/ spi1_mosi/ lcd_seg4 adc_in7/ comp1_inp/ opamp2_vinm - j5 - - - pa7 i/o ft pa7 tim3_ch2/tim11_ch1/ spi1_mosi/ lcd_seg4 adc_in7/ comp1_inp -m4- -- opamp2_vi nm itc opamp2_v inm -- 44 k5 33 24 h6 pc4 i/o ft pc4 lcd_seg22 adc_in14/ comp1_inp 45 l5 34 25 h5 pc5 i/o ft pc5 lcd_seg23 adc_in15/ comp1_inp 46 m5 35 26 h4 pb0 i/o tc pb0 tim3_ch3/lcd_seg5 adc_in8/ comp1_inp/ opamp2_vout/ vref_out 47 m6 36 27 f4 pb1 i/o ft pb1 tim3_ch4/lcd_seg6 adc_in9/ comp1_inp/ vref_out 48 l6 37 28 h3 pb2 i/o ft pb2/ boot1 boot1 adc_in0b 49 k6 - - - pf11 i/o ft pf11 - adc_in1b 50 j7 - - - pf12 i/o ft pf12 - adc_in2b 51 e3 - - - v ss_6 s- v ss_6 -- 52 h3 - - - v dd_6 s- v dd_6 -- table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
docid026175 rev 4 39/128 stm32l162xc/c-a pin descriptions 52 53 k7 - - - pf13 i/o ft pf13 - adc_in3b 54 j8 - - - pf14 i/o ft pf14 - adc_in6b 55 j9 - - - pf15 i/o ft pf15 - adc_in7b 56 h9 - - - pg0 i/o ft pg0 - adc_in8b 57 g9 - - - pg1 i/o ft pg1 - adc_in9b 58 m7 38 - - pe7 i/o tc pe7 - adc_in22/ comp1_inp 59 l7 39 - - pe8 i/o tc pe8 - adc_in23/ comp1_inp 60 m8 40 - - pe9 i/o tc pe9 tim2_ch1_etr adc_in24/ comp1_inp 61 - - - - v ss_7 s- v ss_7 -- 62 - - - - v dd_7 s- v dd_7 -- 63 l8 41 - - pe10 i/o tc pe10 tim2_ch2 adc_in25/ comp1_inp 64 m9 42 - - pe11 i/o ft pe11 tim2_ch3 - 65 l9 43 - - pe12 i/o ft pe12 tim2_ch4/spi1_nss - 66 m10 44 - - pe13 i/o ft pe13 spi1_sck - 67 m11 45 - - pe14 i/o ft pe14 spi1_miso - 68 m12 46 - - pe15 i/o ft pe15 spi1_mosi - 69 l10 47 29 g3 pb10 i/o ft pb10 tim2_ch3/i2c2_scl/ usart3_tx/ lcd_seg10 - 70 l11 48 30 f3 pb11 i/o ft pb11 tim2_ch4/ i2c2_sda/ usart3_rx/ lcd_seg11 - 71f124931h2 v ss_1 s- v ss_1 -- 72 g12 50 32 h1 v dd_1 s- v dd_1 -- 73 l12 51 33 g2 pb12 i/o ft pb12 tim10_ch1/i2c2_smba/ spi2_nss/ i2s2_ws/ usart3_ck/ lcd_seg12 adc_in18/ comp1_inp table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
pin descriptions stm32l162xc/c-a 40/128 docid026175 rev 4 74 k12 52 34 g1 pb13 i/o ft pb13 tim9_ch1/spi2_sck/ i2s2_ck/ usart3_cts/ lcd_seg13 adc_in19/ comp1_inp 75 k11 53 35 f2 pb14 i/o ft pb14 tim9_ch2/spi2_miso/ usart3_rts/ lcd_seg14 adc_in20/ comp1_inp 76 k10 54 36 f1 pb15 i/o ft pb15 tim11_ch1/spi2_mosi/ i2s2_sd/ lcd_seg15 adc_in21/ comp1_inp/ rtc_refin 77 k9 55 - - pd8 i/o ft pd8 usart3_tx/lcd_seg28 - 78 k8 56 - - pd9 i/o ft pd9 usart3_rx/lcd_seg29 - 79 j12 57 - - pd10 i/o ft pd10 usart3_ck/lcd_seg30 - 80 j11 58 - - pd11 i/o ft pd11 usart3_cts/lcd_seg31 - 81 j10 59 - - pd12 i/o ft pd12 tim4_ch1/usart3_rts/ lcd_seg32 - 82 h12 60 - - pd13 i/o ft pd13 tim4_ch2/lcd_seg33 - 83 - - - - v ss_8 s- v ss_8 -- 84 - - - - v dd_8 s- v dd_8 -- 85 h11 61 - - pd14 i/o ft pd14 tim4_ch3/lcd_seg34 - 86 h10 62 - - pd15 i/o ft pd15 tim4_ch4/lcd_seg35 - 87 g10 - - - pg2 i/o ft pg2 - adc_in10b 88 f9 - - - pg3 i/o ft pg3 - adc_in11b 89 f10 - - - pg4 i/o ft pg4 - adc_in12b 90 e9 - - - pg5 i/o ft pg5 - - 91 - - - - pg6 i/o ft pg6 - - 92 - - - - pg7 i/o ft pg7 - - 93 - - - - pg8 i/o ft pg8 - - 94 f6 - - - v ss_9 sv ss_9 -- 95 g6 - - - v dd_9 sv dd_9 -- table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
docid026175 rev 4 41/128 stm32l162xc/c-a pin descriptions 52 96 e12 63 37 e1 pc6 i/o ft pc6 tim3_ch1/i2s2_mck/ lcd_seg24 - 97 e11 64 38 e2 pc7 i/o ft pc7 tim3_ch2/i2s3_mck/ lcd_seg25 - 98 e10 65 39 e3 pc8 i/o ft pc8 tim3_ch3/lcd_seg26 - 99 d12 66 40 d1 pc9 i/o ft pc9 tim3_ch4/lcd_seg27 - 100 d11 67 41 e4 pa8 i/o ft pa8 usart1_ck/mco/ lcd_com0 - 101 d10 68 42 d2 pa9 i/o ft pa9 usart1_tx / lcd_com1 - 102 c12 69 43 d3 pa10 i/o ft pa10 usart1_rx / lcd_com2 - 103 b12 70 44 c1 pa11 i/o ft pa11 usart1_cts/ spi1_miso usb_dm 104 a12 71 45 c2 pa12 i/o ft pa12 usart1_rts/ spi1_mosi usb_dp 105 a11 72 46 d4 pa13 i/o ft jtms- swdio jtms-swdio - 106 c11 73 - - ph2 i/o ft ph2 - - 107 f11 74 47 b1 v ss_2 s- v ss_2 -- 108 g11 75 48 a1 v dd_2 s- v dd_2 -- 109 a10 76 49 b2 pa14 i/o ft jtck- swclk jtck-swclk - 110 a9 77 50 c3 pa15 i/o ft jtdi tim2_ch1_etr/ spi1_nss/spi3_nss/ i2s3_ws/lcd_seg17/ jtdi - 111 b11 78 51 a2 pc10 i/o ft pc10 spi3_sck/i2s3_ck/ usart3_tx/ lcd_seg28/lcd_seg40/ lcd_com4 - 112 c10 79 52 b3 pc11 i/o ft pc11 spi3_miso/usart3_rx/ lcd_seg29/lcd_seg41/ lcd_com5 - table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
pin descriptions stm32l162xc/c-a 42/128 docid026175 rev 4 113 b10 80 53 c4 pc12 i/o ft pc12 spi3_mosi/i2s3_sd/ usart3_ck/lcd_seg30/ lcd_seg42/ lcd_com6 - 114 c9 81 - - pd0 i/o ft pd0 tim9_ch1/spi2_nss/ i2s2_ws - 115 b9 82 - - pd1 i/o ft pd1 spi2_sck/i2s2_ck - 116 c8 83 54 a3 pd2 i/o ft pd2 tim3_etr/lcd_seg31/ lcd_seg43/lcd_com7 - 117 b8 84 - - pd3 i/o ft pd3 spi2_miso/usart2_cts - 118 b7 85 - - pd4 i/o ft pd4 spi2_mosi/i2s2_sd/ usart2_rts/ - 119 a6 86 - - pd5 i/o ft pd5 usart2_tx - 120 f7 - - - v ss_10 s- v ss_10 -- 121 g7 - - - v dd_10 s- v dd_10 -- 122 b6 87 - - pd6 i/o ft pd6 usart2_rx - 123 a5 88 - - pd7 i/o ft pd7 tim9_ch2/usart2_ck - 124 d9 - - - pg9 i/o ft pg9 - - 125 d8 - - - pg10 i/o ft pg10 - - 126 - - - - pg11 i/o ft pg11 - - 127 d7 - - - pg12 i/o ft pg12 - - 128 c7 - - - pg13 i/o ft pg13 - - 129 c6 - - - pg14 i/o ft pg14 - - 130 - - - - v ss_11 s- v ss_11 -- 131 - - - - v dd_11 s- v dd_11 -- 132 - - - - pg15 i/o ft pg15 - - 133 a8 89 55 a4 pb3 i/o ft jtdo tim2_ch2/spi1_sck/ spi3_sck/ i2s3_ck/ lcd_seg7/jtdo comp2_inm table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
docid026175 rev 4 43/128 stm32l162xc/c-a pin descriptions 52 134 a7 90 56 b4 pb4 i/o ft njtrst tim3_ch1/spi1_miso/ spi3_miso/ lcd_seg8/njtrst comp2_inp 135 c5 91 57 a5 pb5 i/o ft pb5 tim3_ch2/i2c1_smba/ spi1_mosi/ spi3_mosi/ i2s3_sd/lcd_seg9 comp2_inp 136 b5 92 58 b5 pb6 i/o ft pb6 tim4_ch1/i2c1_scl/ usart1_tx/ comp2_inp 137 b4 93 59 c5 pb7 i/o ft pb7 tim4_ch2/i2c1_sda/ usart1_rx comp2_inp/ pvd_in 138 a4 94 60 a6 boot0 i b boot0 - - 139 a3 95 61 d5 pb8 i/o ft pb8 tim4_ch3/tim10_ch1/ i2c1_scl/ lcd_seg16 - 140 b3 96 62 b6 pb9 i/o ft pb9 tim4_ch4/ tim11_ch1/i2c1_sda/ lcd_com3 - 141 c3 97 - - pe0 i/o ft pe0 tim4_etr/tim10_ch1/ lcd_seg36 - 142 a2 98 - - pe1 i/o ft pe1 tim11_ch1/lcd_seg37 - 143 d3 99 63 a7 v ss_3 s- v ss_3 -- 144 c4 100 64 a8 v dd_3 s- v dd_3 -- 1. i = input, o = output, s = supply. 2. function availability depends on the chosen device. 3. applicable to stm32l152xd devices only. in stm32l151xd devices, th is pin should be connected to v dd . 4. the pc14 and pc15 i/os are only configured as osc32_in/osc3 2_out when the lse oscillator is on (by setting the lseon bit in the rcc_csr register). the lse oscillator pins osc32_in/osc32_out can be used as general-purpose ph0/ph1 i/os, respectively, when the lse oscillator is off (after reset, the lse oscillator is of f). the lse has priority over the gpio function. for more details, refer to using t he osc32_in/osc32_out pins as gpio pc14/pc15 port pins section in the stm32l151xx, stm32l152xx and stm32l162xx reference manual (rm0038). 5. the ph0 and ph1 i/os are only configured as osc_in/osc_o ut when the hse oscillator is on (by setting the hseon bit in the rcc_cr register). the hse oscillator pins osc_in/osc_out can be used as general-purpose ph0/ph1 i/os, respectively, when the hse oscillator is off ( after reset, the hse oscillator is off ). the hse has priority over the gpio function. table 8. stm32l162xc/c-a pin definitions (continued) pins pin name pin type (1) i / o structure main function (2) (after reset) pin functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 alternate functions additional functions
pin descriptions stm32l162xc/c-a 44/128 docid026175 rev 4 alternate functions table 9. alternate function input/output port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system boot0 boot0 - - - - - - - - - - - event out nrst nrst - - - - - - - - - - - - pa0-wkup1 - tim2_ch1_etr tim5_ch1 - - - - usart2_cts - - - timx_ic1 event out pa1 - tim2_ch2 tim5_ch2 - - - - usart2_rts - seg0 - timx_ic2 event out pa2 - tim2_ch3 tim5_ch3 tim9_ch1 - - - usart2_tx - seg1 - timx_ic3 event out pa3 - tim2_ch4 tim5_ch4 tim9_ch2 - - - usart2_rx - seg2 - timx_ic4 event out pa4 - - - - - spi1_nss spi3_nss i2s3_ws usart2_ck - - - timx_ic1 event out pa5 - tim2_ch1_etr - - - spi1_sck - - - - - timx_ic2 event out pa6 - - tim3_ch1 tim10_ ch1 - spi1_miso - - - seg3 - timx_ic3 event out pa7 - - tim3_ch2 tim11_ ch1 - spi1_mosi - - - seg4 - timx_ic4 event out pa8 mco - - - - - - usart1_ck - com0 - timx_ic1 event out pa9 - - - - - - - usart1_tx - com1 - timx_ic2 event out pa10 - - - - - - - usart1_rx - com2 - timx_ic3 event out pa11 - - - - - spi1_miso usart1_cts - - - timx_ic4 event out
stm32l162xc/c-a pin descriptions docid026175 rev 4 45/128 pa12 - - - - - spi1_mosi - usart1_rts - - - timx_ic1 event out pa13 jtms-swdio - - - - - - - - - - timx_ic2 event out pa14 jtck-swclk - - - - - - - - - - timx_ic3 even tout pa15 jtdi tim2_ch1_etr - - - spi1_nss spi3_nss i2s3_ws --seg17 -timx_ic4 even tout pb0 - - tim3_ch3 - - - - - seg5 - - even tout pb1 - - tim3_ch4 - - - - - - seg6 - - event out pb2 boot1 - - - - - - - - - - - event out pb3 jtdo tim2_ch2 - - - spi1_sck spi3_sck i2s3_ck --seg7 - - event out pb4 njtrst - tim3_ch1 - - spi1_miso spi3_miso - - seg8 - - event out pb5 - - tim3_ch2 - i2c1_ smba spi1_mosi spi3_mosi i2s3_sd --seg9 - - event out pb6 - - tim4_ch1 - i2c1_scl - - usart1_tx - - - - event out pb7 - - tim4_ch2 - i2c1_sda - - usart1_rx - - - event out pb8 - - tim4_ch3 tim10_ch1 i2c1_scl - - - - seg16 - event out pb9 - - tim4_ch4 tim11_ch1 i2c1_sda - - - - com3 - event out pb10 - tim2_ch3 - - i2c2_scl - - usart3_tx - seg10 - - event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
pin descriptions stm32l162xc/c-a 46/128 docid026175 rev 4 pb11 - tim2_ch4 - - i2c2_sda - - usart3_rx - seg11 - - event out pb12 - - - tim10_ch1 i2c2_smba spi2_nss i2s2_ws - usart3_ck - seg12 - - event out pb13 - - - tim9_ch1 - spi2_sck i2s2_ck - usart3_cts - seg13 - - event out pb14 - - - tim9_ch2 - spi2_miso - usart3_rts - seg14 - - event out pb15 - - - tim11_ch1 - spi2_mosi i2s2_sd ---seg15 - - event out pc0 - - - - - - - - seg18 - timx_ic1 event out pc1 - - - - - - - - - seg19 - timx_ic2 event out pc2 - - - - - - - - - seg20 - timx_ic3 event out pc3 - - - - - - - - - seg21 - timx_ic4 event out pc4 - - - - - - - - - seg22 - timx_ic1 event out pc5 - - - - - - - - - seg23 - timx_ic2 event out pc6 - - tim3_ch1 - - i2s2_mck - - - seg24 timx_ic3 event out pc7 - - tim3_ch2 - - - i2s3_mck - - seg25 timx_ic4 event out pc8 - - tim3_ch3 - - - - - - seg26 timx_ic1 event out pc9 - - tim3_ch4 - - - - - - seg27 timx_ic2 event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
stm32l162xc/c-a pin descriptions docid026175 rev 4 47/128 pc10 - - - - - - spi3_sck i2s3_ck usart3_tx com4/ seg28/ seg40 timx_ic3 event out pc11 - - - - - - spi3_miso usart3_rx com5/ seg29 /seg41 timx_ic4 event out pc12 - - - - - - spi3_mosi i2s3_sd usart3_ck com6/ seg30/ seg42 timx_ic1 event out pc13-wkup2 - - - - - - - - - - - timx_ic2 event out pc14 osc32_in - - - - - - - - - - - timx_ic3 event out pc15 osc32_out - - - - - - - - - - - timx_ic4 event out pd0 - - - tim9_ch1 - spi2_nss i2s2_ws ---- timx_ic1 event out pd1 - - - - - spi2 sck i2s2_ck ---- timx_ic2 event out pd2 - - tim3_etr - - - - - com7/ seg31/ seg43 timx_ic3 event out pd3 - - - - - spi2_miso - usart2_cts - - timx_ic4 event out pd4 - - - - - spi2_mosi i2s2_sd - usart2_rts - - timx_ic1 event out pd5 - - - - - - - usart2_tx - - timx_ic2 event out pd6 - - - - - - - usart2_rx - - timx_ic3 event out pd7 - - - tim9_ch2 - - - usart2_ck - - timx_ic4 event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
pin descriptions stm32l162xc/c-a 48/128 docid026175 rev 4 pd8 - - - - - - - usart3_tx - seg28 timx_ic1 event out pd9 - - - - - - - usart3_rx - seg29 timx_ic2 event out pd10 - - - - - - - usart3_ck - seg30 timx_ic3 event out pd11 - - - - - - - usart3_cts - seg31 timx_ic4 event out pd12 - - tim4_ch1 - - - - usart3_rts - seg32 timx_ic1 event out pd13 - - tim4_ch2 - - - - - - seg33 timx_ic2 event out pd14 - - tim4_ch3 - - - - - - seg34 timx_ic3 event out pd15 - - tim4_ch4 - - - - - - seg35 timx_ic4 event out pe0 - - tim4_etr tim10_ch1 - - - - - seg36 timx_ic1 event out pe1 - - - tim11_ch1 - - - - - seg37 timx_ic2 event out pe2 traceck - tim3_etr - - - - - - seg 38 timx_ic3 event out pe3 traced0 - tim3_ch1 - - - - - - seg 39 timx_ic4 event out pe4 traced1 - tim3_ch2 - - - - - - - timx_ic1 event out pe5 traced2 - - tim9_ch1 - - - - - - timx_ic2 event out pe6-wkup3 traced3 - - tim9_ch2 - - - - - - - timx_ic3 event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
stm32l162xc/c-a pin descriptions docid026175 rev 4 49/128 pe7 - - - - - - - - - - timx_ic4 event out pe8 - - - - - - - - - - timx_ic1 event out pe9 - tim2_ch1_etr - - - - - - - - timx_ic2 event out pe10 - tim2_ch2 - - - - - - - - timx_ic3 event out pe11 - tim2_ch3 - - - - - - - - timx_ic4 event out pe12 - tim2_ch4 - - - spi1_nss - - - - timx_ic1 event out pe13 - - - - - spi1_sck - - - - timx_ic2 event out pe14 - - - - - spi1_miso - - - - timx_ic3 event out pe15 - - - - - spi1_mosi - - - - timx_ic4 event out pf0 - - - - - - - - - - - event out pf1 - - - - - - - - - - - event out pf2 - - - - - - - - - - - event out pf3 - - - - - - - - - - - event out pf4 - - - - - - - - - - - event out pf5 - - - - - - - - - - - event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
pin descriptions stm32l162xc/c-a 50/128 docid026175 rev 4 pf6 - - tim5_etr - - - - - - - - - event out pf7 - - tim5_ch2 - - - - - - - - - event out pf8 - - tim5_ch3 - - - - - - - - - event out pf9 - - tim5_ch4 - - - - - - - - - event out pf10 - - - - - - - - - - - - event out pf11 - - - - - - - - - - - - event out pf12 - - - - - - - - - - - event out pf13 - - - - - - - - - - - event out pf14 - - - - - - - - - - - event out pf15 - - - - - - - - - - - event out pg0 - - - - - - - - - - - event out pg1 - - - - - - - - - - - event out pg2 - - - - - - - - - - - event out pg3 - - - - - - - - - - - event out pg4 - - - - - - - - - - - event out table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
stm32l162xc/c-a pin descriptions docid026175 rev 4 51/128 pg5 - - - - - - - - - - - event out pg6 - - - - - - - - - - - - event out pg7 - - - - - - - - - - - - event out pg8 - - - - - - - - - - - - event out pg9 - - - - - - - - - - - event out pg10 - - - - - - - - - - - event out pg11 - - - - - - - - - - - - event out pg12 - - - - - - - - - - - event out pg13 - - - - - - - - - - - event out pg14 - - - - - - - - - - - event out pg15 - - - - - - - - - - - - event out ph0osc_in - - - - - - - - - - - - - ph1osc_out - - - - - - - - - - - - - ph2 - - - - - - - - - - - - table 9. alternate functi on input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 - lcd - cpri system
memory mapping s tm32l162xc/c-a 52/128 docid026175 rev 4 5 memory mapping figure 7. memory map reserved #2# 4)- 2eserved 4)- 4)- 24# 77$' )7$' 30) 53!24 53!24 393#&' 4)- 4)- rese rve d !$# 53!24 reserved 30) 30) )# 072 4)- )# reserved %84) reserved 2## &lash)nterf ace reserved $-! 53"2eg isters         0eripherals 32!- o # rtex -)nternal 0er ip h er al s -36 byte 53" 4)- 4)- ,#$ 4)- x x x x# $!# x 0ort! 0ort" 0ort# 0ort$ 0ort% 0ort( x x x x# x x #/-0 2) &lashmemory 3ystemmemory !liasedto&lashorsystem memorydependingon "//4pins $ata %%02/- reserved reserved reserved reserved reserved .on volatile memory reserved /ption byte reserved reserved reserved reserved reserved reserved $-! x&& x x x x# x x x x x# x x x x x x x x# x x x x x# x x x x x# x x x# x x x x# x x x x# x x# x x x x&&& x&& x&& x&& x&& x x x x x x&&&&&&&& x% x% x# x! x x x x x !%3 reserved x x&&
docid026175 rev 4 53/128 stm32l162xc/c-a electrical characteristics 111 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 3.6 v (for the 1.65 v v dd 3.6 v voltage range). they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 8 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 9 . figure 8. pin loading conditions figure 9. pin input voltage dlf & s) 0&8slq dlg 0&8slq 9 ,1
electrical characteristics stm32l162xc/c-a 54/128 docid026175 rev 4 6.1.6 power supply scheme figure 10. power supply scheme 069 $qdorj 26&3//&203 ? 9 '' *3,2v 287 ,1 .huqhoorjlf &38 'ljlwdo  0hprulhv  6wdqge\srzhuflufxlwu\ /6(57&:dnhxs orjlf57&edfnxs uhjlvwhuv 1?q) ??) 5hjxodwru 9 66 9 ''$ 9 5() 9 5() 9 66$ $'& '$& /hyhovkliwhu ,2 /rjlf 9 '' q) ?) 9 5() q) ?) 9 ''$ 1qxpehuri 9 '' 9 66 sdluv
docid026175 rev 4 55/128 stm32l162xc/c-a electrical characteristics 111 6.1.7 optional lcd power supply scheme figure 11. optional lcd power supply scheme 1. option 1: lcd power supply is provided by a dedicated vlcd supply source, vsel switch is open. 2. option 2: lcd power supply is provided by the in ternal step-up converter, vsel switch is closed, an external capacitance is needed for co rrect behavior of this converter. 6.1.8 current consumption measurement figure 12. current consum ption measurement scheme 069 9 ''1 1[q) [?) 6whsxs &rqyhuwhu 9 661 9 '' q) 9 /&' 9 /&' & (;7 /&' 96(/ 2swlrq 2swlrq 1[q) [?) 1[9 66 1[9 '' 9 66$ q) ?) $   9 5() 9 5() 9 ''$ 9 /&' 069
electrical characteristics stm32l162xc/c-a 56/128 docid026175 rev 4 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 10: voltage characteristics , table 11: current characteristics , and table 12: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may af fect device reliability. table 10. voltage characteristics symbol ratings min max unit v dd ?v ss external main supply voltage (including v dda and v dd ) (1) ?0.3 4.0 v v in (2) input voltage on five-volt tolerant pin v ss ? 0.3 v dd +4.0 input voltage on any other pin v ss ? 0.3 4.0 | v ddx | variations between different v dd power pins - 50 mv |v ssx ? v ss | variations between all different ground pins (3) -50 v ref+ ?v dda allowed voltage difference for v ref+ > v dda -0.4v v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.11 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 2. v in maximum must always be respected. refer to table 11 for maximum allowed injected current values. 3. include v ref- pin. table 11. current characteristics symbol ratings max. unit i vdd( ) total current into sum of all v dd_x power lines (source) (1) 100 ma i vss( ) (2) total current out of sum of all v ss_x ground lines (sink) (1) 100 i vdd(pin) maximum current into each v dd_x power pin (source) (1) 70 i vss(pin) maximum current out of each vss_x ground pin (sink) (1) -70 i io output current sunk by any i/o and control pin 25 output current sourced by any i/o and control pin - 25 i io(pin) total output current sunk by su m of all ios and control pins (2) 60 total output current sourced by sum of all ios and control pins (2) -60 i inj(pin) (3) injected current on fi ve-volt tolerant i/o (4) , rst and b pins -5/+0 injected current on any other pin (5) 5 i inj(pin) total injected current (sum of all i/o and control pins) (6) 25 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 2. this current consumption must be correc tly distributed over all i/os and control pi ns. the total output current must not be sunk/sourced between two consecutive power supply pins referring to high pi n count lqfp packages. 3. negative injection disturbs the analog performance of the device. see note in section 6.3.17 .
docid026175 rev 4 57/128 stm32l162xc/c-a electrical characteristics 111 6.3 operating conditions 6.3.1 general operating conditions 4. positive current injection is not possible on these i/os. a negative in jection is induced by v in v dd while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 10: voltage characteristics for the maximum allowed input voltage values. 6. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). table 12. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c table 13. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency - 0 32 mhz f pclk1 internal apb1 clock frequency - 0 32 f pclk2 internal apb2 clock frequency - 0 32 v dd standard operating voltage bor detector disabled 1.65 3.6 v bor detector enabled, at power on 1.8 3.6 bor detector disabled, after power on 1.65 3.6 v dda (1) analog operating voltage (adc and dac not used) must be the same voltage as v dd (2) 1.65 3.6 v analog operating voltage (adc or dac used) 1.8 3.6 v in i/o input voltage ft pins; 2.0 v v dd -0.3 5.5 (3) v ft pins; v dd < 2.0 v -0.3 5.25 (3) boot0 pin 0 5.5 any other pin -0.3 v dd +0.3 p d power dissipation at ta = 85 c for suffix 6 or ta = 105 c for suffix 7 (4) ufbga132 package - 333 mw lqfp144 package - 500 lqfp100 package - 465 lqfp64 package - 435 t a ambient temperature for 6 suffix version maximum power dissipation (5) ?40 85 c ambient temperature for 7 suffix version maximum power dissipation ?40 105
electrical characteristics stm32l162xc/c-a 58/128 docid026175 rev 4 6.3.2 embedded reset and power control block characteristics the parameters given in the following table are derived from the tests performed under the conditions su mmarized in table 13 . t j junction temperature range 6 suffix version ?40 105 c 7 suffix version ?40 110 1. when the adc is used, refer to table 55: adc characteristics . 2. it is recommended to power v dd and v dda from the same source. a maximum difference of 300 mv between v dd and v dda can be tolerated during power-up . 3. to sustain a voltage higher than vdd+0.3v, the inte rnal pull-up/pull-down resi stors must be disabled. 4. if t a is lower, higher p d values are allowed as long as t j does not exceed t j max (see table 69: thermal characteristics on page 124 ). 5. in low-power dissipation state, t a can be extended to -40c to 105c temperature range as long as t j does not exceed t j max (see table 69: thermal characteristics on page 124 ). table 13. general operating conditions (continued) symbol parameter conditions min max unit table 14. embedded reset and power control block characteristics symbol parameter conditions min typ max unit t vdd (1) v dd rise time rate bor detector enabled 0 - s/v bor detector disabled 0 - 1000 v dd fall time rate bor detector enabled 20 - bor detector disabled 0 - 1000 t rsttempo (1) reset temporization v dd rising, bor enabled - 2 3.3 ms v dd rising, bor disabled (2) 0.4 0.7 1.6 v por/pdr power on/power down reset threshold falling edge 1 1.5 1.65 v rising edge 1.3 1.5 1.65 v bor0 brown-out reset threshold 0 falling edge 1.67 1.7 1.74 rising edge 1.69 1.76 1.8 v bor1 brown-out reset threshold 1 falling edge 1.87 1.93 1.97 rising edge 1.96 2.03 2.07 v bor2 brown-out reset threshold 2 falling edge 2.22 2.30 2.35 rising edge 2.31 2.41 2.44
docid026175 rev 4 59/128 stm32l162xc/c-a electrical characteristics 111 v bor3 brown-out reset threshold 3 falling edge 2.45 2.55 2.6 v rising edge 2.54 2.66 2.7 v bor4 brown-out reset threshold 4 falling edge 2.68 2.8 2.85 rising edge 2.78 2.9 2.95 v pvd0 programmable voltage detector threshold 0 falling edge 1.8 1.85 1.88 rising edge 1.88 1.94 1.99 v pvd1 pvd threshold 1 falling edge 1.98 2.04 2.09 rising edge 2.08 2.14 2.18 v pvd2 pvd threshold 2 falling edge 2.20 2.24 2.28 rising edge 2.28 2.34 2.38 v pvd3 pvd threshold 3 falling edge 2.39 2.44 2.48 rising edge 2.47 2.54 2.58 v pvd4 pvd threshold 4 falling edge 2.57 2.64 2.69 rising edge 2.68 2.74 2.79 v pvd5 pvd threshold 5 falling edge 2.77 2.83 2.88 rising edge 2.87 2.94 2.99 v pvd6 pvd threshold 6 falling edge 2.97 3.05 3.09 rising edge 3.08 3.15 3.20 v hyst hysteresis voltage bor0 threshold - 40 - mv all bor and pvd thresholds excepting bor0 - 100 - 1. guaranteed by characterization results. 2. valid for device version without bor at power up. please see option ?d? in orderi ng information scheme for more details. table 14. embedded reset and power control block characteristics (continued) symbol parameter conditions min typ max unit
electrical characteristics stm32l162xc/c-a 60/128 docid026175 rev 4 6.3.3 embedded internal reference voltage the parameters given in table 16 are based on characterization results, unless otherwise specified. table 15. embedded internal reference voltage calibration values calibration value name description memory address vrefint_cal raw data acquired at temperature of 30 c 5 c v dda = 3 v 10 mv 0x1ff8 00f8 - 0x1ff8 00f9 table 16. embedded internal reference voltage symbol parameter conditions min typ max unit v refint out (1) internal reference voltage ? 40 c < t j < +110 c 1.202 1.224 1.242 v i refint internal reference current consumption --1.42.3a t vrefint internal reference startup time - - 2 3 ms v vref_meas v dda and v ref+ voltage during v refint factory measure -2.9933.01v a vref_meas accuracy of factory-measured v ref value (2) including uncertainties due to adc and v dda /v ref+ values -- 5mv t coeff (3) temperature coefficient ?40 c < t j < +110 c - 25 100 ppm/ c a coeff (3) long-term stability 1000 hours, t= 25 c - - 1000 ppm v ddcoeff (3) voltage coefficient 3.0 v < v dda < 3.6 v - - 2000 ppm/v t s_vrefint (3) adc sampling time when reading the internal reference voltage -4--s t adc_buf (3) startup time of reference voltage buffer for adc ---10s i buf_adc (3) consumption of reference voltage buffer for adc - - 13.5 25 a i vref_out (3) vref_out output current (4) ---1a c vref_out (3) vref_out output load - - - 50 pf i lpbuf (3) consumption of reference voltage buffer for vref_out and comp - - 730 1200 na v refint_div1 (3) 1/4 reference voltage - 24 25 26 % v refin t v refint_div2 (3) 1/2 reference voltage - 49 50 51 v refint_div3 (3) 3/4 reference voltage - 74 75 76 1. guaranteed by test in production. 2. the internal v ref value is individually measured in produc tion and stored in dedicated eeprom bytes. 3. guaranteed by characterization results. 4. to guarantee less than 1% vref_out deviation.
docid026175 rev 4 61/128 stm32l162xc/c-a electrical characteristics 111 6.3.4 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, temperature, i/o pin loadi ng, device software conf iguration, operating frequencies, i/o pin switching rate, program lo cation in memory and executed binary code. the current consumption is measured as described in figure 12: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equ ivalent to the dhrystone 2.1 code, unless otherwise specified. the current consumptio n values are derived from tests performed under ambient temperature t a = 25 c and v dd supply voltage conditions summarized in table 13: general operating conditions , unless otherwise specified. the mcu is placed under the following conditions: ? all i/o pins are configured in analog input mode ? all peripherals are disabled ex cept when explicitly mentioned. ? the flash memory access time, 64-bit access and prefetch is adjusted depending on f hclk frequency and voltage range to provide the best cpu performance. ? when the peripherals are enabled f apb1 = f apb2 = f ahb . ? when pll is on, the pll inputs are equal to hsi = 16 mhz (if internal clock is used) or hse = 16 mhz (if hse bypass mode is used). ? the hse user clock applied to osci_in input follows the characteristic specified in table 26: high-speed external user clock characteristics . ? for maximum current consumption v dd = v dda = 3.6 v is applied to all supply pins. ? for typical current consumption v dd = v dda = 3.0 v is applied to all supply pins if not specified otherwise.
electrical characteristics stm32l162xc/c-a 62/128 docid026175 rev 4 table 17. current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk [mhz] typ max (1) unit i dd (run from flash) supply current in run mode code executed from flash f hse = f hclk up to 16mhz, included f hse = f hclk /2 above 16 mhz (pll on) (2) range3, v core =1.2 v vos[1:0]=11 1 290 500 a 2 505 750 4 955 1200 range2, v core =1.5 v vos[1:0]=10 41.151.6 ma 82.32.9 16 4.25 5.2 range1, v core =1.8 v vos[1:0]=01 82.653.5 16 5.35 6.5 32 10.5 12 hsi clock source (16 mhz) range2, v core =1.5 v vos[1:0]=10 16 4.35 5.2 range1, v core =1.8 v vos[1:0]=01 32 10.5 12.3 msi clock, 65 khz range3, v core =1.2 v vos[1:0]=11 0.065 46 130 a msi clock, 524 khz 0.524 160 250 msi clock, 4.2 mhz 4.2 965 1200 1. guaranteed by characterization re sults, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register).
docid026175 rev 4 63/128 stm32l162xc/c-a electrical characteristics 111 table 18. current consumption in run mode, code with data processing running from ram symbol parameter conditions f hclk typ max unit i dd (run from ram) supply current in run mode code executed from ram f hse = f hclk up to 16 mhz, included f hse = f hclk /2 above 16mhz (pll on) (1) range3, v core =1.2 v vos[1:0]=11 1 230 470 a 2 415 780 4 800 1200 range2, v core =1.5 v vos[1:0]=10 4 0.935 1.5 ma 81.93 16 3.75 5 range1, v core =1.8 v vos[1:0]=01 8 2.25 3.5 16 4.45 5.55 32 9.05 10.9 hsi clock source (16 mhz) range2, v core =1.5 v vos[1:0]=10 16 3.75 4.8 range1, v core =1.8 v vos[1:0]=01 32 8.95 11.7 msi clock, 65 khz range3, v core =1.2 v vos[1:0]=11 0.065 43.5 100 a msi clock, 524 khz 0.524 135 215 msi clock, 4.2 mhz 4.2 835 1100 1. oscillator bypassed (hsebyp = 1 in rcc_cr register).
electrical characteristics stm32l162xc/c-a 64/128 docid026175 rev 4 table 19. current consumption in sleep mode symbol parameter conditions f hclk typ max (1) unit i dd(sleep) supply current in sleep mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz, included f hse = f hclk /2 above 16 mhz (pll on) (2) range3, vcore=1.2 v vos[1:0]=11 158220 a 296300 4 170 380 range2, vcore=1.5 v vos[1:0]=10 4 210 500 8 400 700 16 810 1100 range1, vcore=1.8 v vos[1:0]=01 8 485 800 16 955 1250 32 2100 2700 hsi clock source (16 mhz) range2, vcore=1.5 v vos[1:0]=10 16 835 1100 range1, vcore=1.8 v vos[1:0]=01 32 2100 2700 msi clock, 65 khz range3, vcore=1.2 v vos[1:0]=11 0.065 18.5 72 msi clock, 524 khz 0.524 37 92 msi clock, 4.2 mhz 4.2 180 273 supply current in sleep mode, flash switched on f hse = f hclk up to 16 mhz, included f hse = f hclk /2 above 16mhz (pll on) (2) range3, vcore=1.2 v vos[1:0]=11 175250 2 115 300 4 200 380 range2, vcore=1.5 v vos[1:0]=10 4 230 500 8 430 700 16 840 1120 range1, vcore=1.8 v vos[1:0]=01 8 500 800 16 980 1300 32 2100 2700 hsi clock source (16 mhz) range2, vcore=1.5 v vos[1:0]=10 16 860 1160 range1, vcore=1.8 v vos[1:0]=01 32 2150 2800 msi clock, 65 khz range3, vcore=1.2 v vos[1:0]=11 0.065 33,5 90 msi clock, 524 khz 0.524 53 110 msi clock, 4.2 mhz 4.2 200 290 1. guaranteed by characterization re sults, unless otherwise specified.
docid026175 rev 4 65/128 stm32l162xc/c-a electrical characteristics 111 2. oscillator bypassed (hsebyp = 1 in rcc_cr register) table 20. current consumption in low-power run mode symbol parameter conditions typ max (1) unit i dd (lp run) supply current in low-power run mode all peripherals off, code executed from ram, flash switched off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 11 14 a t a = 85 c 26 32 t a = 105 c 53 72 msi clock, 65 khz f hclk = 65 khz t a =-40 c to 25 c 18 21 t a = 85 c 33 40 t a = 105 c 60 78 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 36 41 t a = 55 c 39 44 t a = 85 c 50 58 t a = 105 c 78 95 all peripherals off, code executed from flash, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 36 40.5 t a = 85 c 53 60 t a = 105 c 81 100 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 44 49 t a = 85 c 61 67 t a = 105 c 89 107 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 64 71 t a = 55 c 68 73 t a = 85 c 80 88 t a = 105 c 101 110 i dd max (lp run) max allowed current in low-power run mode v dd from 1.65 v to 3.6 v - - - 200 1. guaranteed by characterization re sults, unless otherwise specified.
electrical characteristics stm32l162xc/c-a 66/128 docid026175 rev 4 table 21. current consumption in low-power sleep mode symbol parameter conditions typ max (1) unit i dd (lp sleep) supply current in low-power sleep mode all peripherals off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz flash off t a = -40 c to 25 c 4.4 - a msi clock, 65 khz f hclk = 32 khz flash on t a = -40 c to 25 c 18 21 t a = 85 c 24 27 t a = 105 c 35 43 msi clock, 65 khz f hclk = 65 khz, flash on t a = -40 c to 25 c 18.6 21 t a = 85 c 24.5 28 t a = 105 c 35 42 msi clock, 131 khz f hclk = 131 khz, flash on t a = -40 c to 25 c 22 25 t a = 55 c 23.5 26 t a = 85 c 28.5 31 t a = 105 c 39 45 tim9 and usart1 enabled, flash on, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 18 20.5 t a = 85 c 24 27 t a = 105 c 35 43 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 18.6 21 t a = 85 c 24.5 28 t a = 105 c 35 42 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 22 25 t a = 55 c 23.5 26 t a = 85 c 28.5 31 t a = 105 c 39 45 i dd max (lp sleep) max allowed current in low-power sleep mode v dd from 1.65 v to 3.6 v ---200 1. guaranteed by characterization resu lts, unless otherwise specified.
docid026175 rev 4 67/128 stm32l162xc/c-a electrical characteristics 111 table 22. typical and maximum current consumptions in stop mode symbol parameter conditions typ max (1) unit i dd (stop with rtc) supply current in stop mode with rtc enabled rtc clocked by lsi or lse external clock (32.768khz), regulator in lp mode, hsi and hse off (no independent watchdog) lcd off t a = -40c to 25c v dd = 1.8 v 1.1 - a t a = -40c to 25c 1.35 4 t a = 55c 1.95 6 t a = 85c 4.35 10 t a = 105c 11.0 23 lcd on (static duty) (2) t a = -40c to 25c 1.65 6 t a = 55c 2.1 7 t a = 85c 4.7 12 t a = 105c 11.0 27 lcd on (1/8 duty) (3) t a = -40c to 25c 2.5 10 t a = 55c 4.65 11 t a = 85c 7.25 16 t a = 105c 14.0 44 rtc clocked by lse external quartz (32.768khz), regulator in lp mode, hsi and hse off (no independent watchdog (4) lcd off t a = -40c to 25c 1.7 - t a = 55c 2.15 - t a = 85c 4.7 - t a = 105c 11.5 - lcd on (static duty) (2) t a = -40c to 25c 1.8 - t a = 55c 2.35 - t a = 85c 4.85 - t a = 105c 11.5 - lcd on (1/8 duty) (3) t a = -40c to 25c 2.45 - t a = 55c 4.9 - t a = 85c 7.7 - t a = 105c 14.5 - lcd off t a = -40c to 25c v dd = 1.8v 1.35 - t a = -40c to 25c v dd = 3.0v 1.7 - t a = -40c to 25c v dd = 3.6v 2.0 -
electrical characteristics stm32l162xc/c-a 68/128 docid026175 rev 4 i dd (stop) supply current in stop mode (rtc disabled) regulator in lp mode, hsi and hse off, independent watchdog and lsi enabled t a = -40c to 25c 1.6 2.2 a regulator in lp mode, lsi, hsi and hse off (no independent watchdog) t a = -40c to 25c 0.475 1 t a = 55c 0.915 3 t a = 85c 3.35 9 t a = 105c 10.0 22 (5) i dd (wu from stop) supply current during wakeup from stop mode msi = 4.2 mhz t a = -40c to 25c 2- ma msi = 1.05 mhz 1.45 - msi = 65 khz (6) 1.45 - 1. guaranteed by characterization re sults, unless otherwise specified. 2. lcd enabled with external vlcd, static duty, divisi on ratio = 256, all pixels active, no lcd connected. 3. lcd enabled with external vlcd, 1/8 duty, 1/3 bias, di vision ratio = 64, all pixe ls active, no lcd connected. 4. based on characterization done with a 32.768 khz crystal (mc 306-g-06q-32.768, manufacturer jfvny) with two 6.8 pf loading capacitors. 5. guaranteed by test in production. 6. when msi = 64 khz, the rms current is measured over the fi rst 15 s following the wakeup event. for the remaining part of the wakeup period, the current corresponds the run mode current. table 22. typical and maximum current consumptions in stop mode (continued) symbol parameter conditions typ max (1) unit
docid026175 rev 4 69/128 stm32l162xc/c-a electrical characteristics 111 on-chip peripheral current consumption the current consumption of the on-chip peripher als is given in the following table. the mcu is placed under the following conditions: ? all i/o pins are in input mode with a static value at v dd or v ss (no load) ? all peripherals are disabled unless otherwise mentioned ? the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on table 23. typical and maximum current consumptions in standby mode symbol parameter conditions typ max (1) unit i dd (standby with rtc) supply current in standby mode with rtc enabled rtc clocked by lsi (no independent watchdog) t a = -40 c to 25 c v dd = 1.8 v 0.82 - a t a = -40 c to 25 c 1.15 1.9 t a = 55 c 1.15 2.2 t a = 85 c 1.65 4 t a = 105 c 2.75 8.3 (2) rtc clocked by lse external quartz (no independent watchdog) (3) t a = -40 c to 25 c v dd = 1.8 v 1.05 - t a = -40 c to 25 c 1.35 - t a = 55 c 1.55 - t a = 85 c 2.1 - t a = 105 c 3.3 - i dd (standby) supply current in standby mode (rtc disabled) independent watchdog and lsi enabled t a = -40 c to 25 c 1 1.7 independent watchdog and lsi off t a = -40 c to 25 c 0.305 0.6 t a = 55 c 0.365 0.9 t a = 85 c 0.66 2.75 t a = 105 c 2 7 (2) i dd (wu from standby) supply current during wakeup time from standby mode -t a = -40 c to 25 c 1 - ma 1. guaranteed by characterization resu lts, unless otherwise specified. 2. guaranteed by test in production. 3. based on characterization done with a 32.768 khz crystal (m c306-g-06q-32.768, manufacturer jfvny) with two 6.8pf loading capacitors.
electrical characteristics stm32l162xc/c-a 70/128 docid026175 rev 4 table 24. peripheral current consumption (1) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low-power sleep and run apb1 tim2 14.3 12.1 9.5 12.1 a/mhz (f hclk ) tim3 13.8 11.7 9.2 11.7 tim4 13.2 11.1 8.7 11.1 tim5 17.7 14.9 11.8 14.9 tim6 4.8 4.0 3.0 4.0 tim7 4.7 3.9 3.0 3.9 lcd 5.0 4.1 3.3 4.1 wwdg 3.5 2.9 2.3 2.9 spi2 8.9 7.4 5.8 7.4 spi3 7.3 6.0 4.8 6.0 usart2 9.4 7.7 6.1 7.7 usart3 9.4 7.6 6.0 7.6 i2c1 8.9 7.4 5.8 7.4 i2c2 7.9 6.4 5.1 6.4 usb 21.2 18.0 14.3 18.0 pwr 4.0 3.2 2.5 3.2 dac 6.3 5.5 4.4 5.5 comp 4.9 3.9 3.2 3.9
docid026175 rev 4 71/128 stm32l162xc/c-a electrical characteristics 111 apb2 syscfg & ri 3.5 2.9 2.4 2.9 a/mhz (f hclk ) tim9 9.0 7.4 5.8 7.4 tim10 7.1 5.8 4.6 5.8 tim11 6.5 5.3 4.3 5.3 adc (2) 11.0 9.1 7.2 9.1 spi1 5.1 4.2 3.3 4.2 usart1 9.4 7.8 6.1 7.8 ahb gpioa 7.3 6.1 4.8 6.1 gpiob 7.5 6.1 4.8 6.1 gpioc 8.2 6.8 5.3 6.8 gpiod 8.7 7.1 5.7 7.1 gpioe 7.6 6.2 4.9 6.2 gpiof 7.7 6.3 5.0 6.3 gpiog 8.4 7.0 5.4 7.0 gpioh 1.8 1.3 1.1 1.3 crc 0.8 0.6 0.4 0.6 aes 5434 flash 26.3 19.3 18.3 - (3) dma1 19.0 16.0 12.8 16.0 dma2 17.0 14.5 11.5 14.5 all enabled 266 210 187 190.7 i dd (rtc) 0.4 a i dd (lcd) 3.1 i dd (adc) (4) 1450 i dd (dac) (5) 340 i dd (comp1) 0.16 i dd (comp2) slow mode 2 fast mode 5 i dd (pvd / bor) (6) 2.6 i dd (iwdg) 0.25 table 24. peripheral current consumption (1) (continued) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low-power sleep and run
electrical characteristics stm32l162xc/c-a 72/128 docid026175 rev 4 6.3.5 wakeup time from low-power mode the wakeup times given in the following table are measured with the msi rc oscillator. the clock source used to wake up the device depends on the current operating mode: ? sleep mode: the clock source is the clock that was set before entering sleep mode ? stop mode: the clock source is the msi o scillator in the range configured before entering stop mode ? standby mode: the clock source is the msi oscillator running at 2.1 mhz all timings are derived from tests performed under the conditions summarized in table 13 . 1. data based on differential i dd measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f hclk = 32 mhz (range 1), f hclk = 16 mhz (range 2), f hclk = 4 mhz (range 3), f hclk = 64khz (low-power run/sleep), f apb1 = f hclk , f apb2 = f hclk , default prescaler value for each peripheral. the cpu is in sleep mode in both cases. no i/o pins toggling. 2. hsi oscillator is off for this measure. 3. in low-power sleep and run mode, the flash memory must always be in power-down mode. 4. data based on a differential i dd measurement between adc in reset configuration and continuous adc conversion (hsi consumption not included). 5. data based on a differential i dd measurement between dac in reset configuration and continuous dac conversion of v dd /2. dac is in buffered mode, output is left floating. 6. including supply current of internal reference voltage.
docid026175 rev 4 73/128 stm32l162xc/c-a electrical characteristics 111 6.3.6 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio.the external clock signal has to re spect the i/o characteristics in section 6.3.12 . however, the recommended clock input waveform is shown in figure 13 . table 25. low-power mode wakeup timings symbol parameter conditions typ max (1) 1. guaranteed by characterizati on, unless otherwise specified unit t wusleep wakeup from sleep mode f hclk = 32 mhz 0.4 - s t wusleep_lp wakeup from low-power sleep mode, f hclk = 262 khz f hclk = 262 khz flash enabled 46 - f hclk = 262 khz flash switched off 46 - t wustop wakeup from stop mode, regulator in run mode ulp bit = 1 and fwu bit = 1 f hclk = f msi = 4.2 mhz 8.2 - wakeup from stop mode, regulator in low-power mode ulp bit = 1 and fwu bit = 1 f hclk = f msi = 4.2 mhz voltage range 1 and 2 7.7 8.9 f hclk = f msi = 4.2 mhz voltage range 3 8.2 13.1 f hclk = f msi = 2.1 mhz 10.2 13.4 f hclk = f msi = 1.05 mhz 16 20 f hclk = f msi = 524 khz 31 37 f hclk = f msi = 262 khz 57 66 f hclk = f msi = 131 khz 112 123 f hclk = msi = 65 khz 221 236 t wustdby wakeup from standby mode ulp bit = 1 and fwu bit = 1 f hclk = msi = 2.1 mhz 58 104 wakeup from standby mode fwu bit = 0 f hclk = msi = 2.1 mhz 2.6 3.25 ms table 26. high-speed external user clock characteristics (1) symbol parameter conditions min typ max unit f hse_ext user external clock source frequency css is on or pll is used 1832mhz css is off, pll not used 0832mhz
electrical characteristics stm32l162xc/c-a 74/128 docid026175 rev 4 figure 13. high-speed external clock source ac timing diagram v hseh osc_in input pin high level voltage - 0.7v dd -v dd v v hsel osc_in input pin low level voltage v ss -0.3v dd t w(hseh) t w(hsel) osc_in high or low time 12 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20 c in(hse) osc_in input capacitance - 2.6 - pf 1. guaranteed by design. table 26. high-speed external user clock characteristics (1) (continued) symbol parameter conditions min typ max unit 069 9 +6(+ w i +6(   7 +6( w w u +6( 9 +6(/ w z +6(+ w z +6(/
docid026175 rev 4 75/128 stm32l162xc/c-a electrical characteristics 111 low-speed external user clock generated from an external source the characteristics given in the following table result from tests performed using a low- speed external clock source, and under the conditions summarized in table 13 . figure 14. low-speed external clock source ac timing diagram high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 1 to 24 mhz crystal/ceramic resonator oscillator. all th e information given in this paragraph are based on characterization results obtained with typical external components specified in table 28 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion an d startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequenc y, package, accuracy). table 27. low-speed external user clock characteristics (1) 1. guaranteed by design. symbol parameter conditions min typ max unit f lse_ext user external clock source frequency - 1 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd -v dd v v lsel osc32_in input pin low level voltage v ss -0.3v dd t w(lseh) t w(lsel) osc32_in high or low time 465 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 10 c in(lse) osc32_in input capacitance - - 0.6 - pf 069 9 /6(+ w i /6(   7 /6( w w u /6( 9 /6(/ w z /6(+ w z /6(/
electrical characteristics stm32l162xc/c-a 76/128 docid026175 rev 4 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high-freque ncy applications, and selected to match the requirements of the crystal or resonator (see figure 15 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . refer to the application note an28 67 ?oscillator design guide for st microcontrollers? availabl e from the st website www.st.com . table 28. hse oscilla tor characteristics (1)(2) symbol parameter conditions min typ max unit f osc_in oscillator frequency - 1 24 mhz r f feedback resistor - - 200 - k c recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) r s = 30 -20 - pf i hse hse driving current v dd = 3.3 v, v in = v ss with 30 pf load -- 3 ma i dd(hse) hse oscillator power consumption c = 20 pf f osc = 16 mhz -- 2.5 (startup) 0.7 (stabilized) ma c = 10 pf f osc = 16 mhz -- 2.5 (startup) 0.46 (stabilized) g m oscillator transconductance startup 3.5 - - ma /v t su(hse) (4) startup time v dd is stabilized - 1 - ms 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. guaranteed by characterization results. 3. the relatively low value of the rf resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and t he bias condition change. however, it is recommended to take this point into account if the mcu is used in tough humidity conditions. 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standar d crystal resonator and it can vary signi ficantly with the crystal manufacturer.
docid026175 rev 4 77/128 stm32l162xc/c-a electrical characteristics 111 figure 15. hse oscilla tor circuit diagram 1. r ext value depends on the cr ystal characteristics. low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillator. all th e information given in this paragraph are based on characterization results obtained with typical external components specified in table 29 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion an d startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequenc y, package, accuracy). table 29. lse oscillator characteristics (f lse = 32.768 khz) (1) 1. guaranteed by characterization results. symbol parameter conditions min typ max unit f lse low speed external oscillator frequency - - 32.768 - khz r f feedback resistor - - 1.2 - m c (2) 2. refer to the note and caution paragraphs below the table, and to the applicat ion note an2867 ?oscillator design guide for st microcontrollers?. recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the oscillator selection can be optimized in terms of supply current using an hi gh quality resonator with small r s value for example msiv-tin32.768khz. refer to crystal manufacturer for more details. r s = 30 k -8 -pf i lse lse driving current v dd = 3.3 v, v in = v ss --1.1a i dd (lse) lse oscillator current consumption v dd = 1.8 v - 450 - na v dd = 3.0 v - 600 - v dd = 3.6v - 750 - g m oscillator transconductance - 3 - - a/v t su(lse) (4) startup time v dd is stabilized - 1 - s 26&b287 26&b,1 i +6( wrfruh & / & / 5 ) 670 5hvrqdwru &rqvxpswlrq frqwuro j p 5 p & p / p & 2 5hvrqdwru dle
electrical characteristics stm32l162xc/c-a 78/128 docid026175 rev 4 note: for c l1 and c l2 , it is recommended to use high-quality ceramic capacitors in the 5 pf to 15 pf range selected to match the requirements of the crystal or resonator (see figure 16 ). c l1 and c l2, are usually the same size. the crystal ma nufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . load capacitance c l has the following formula: c l = c l1 x c l2 / ( c l1 + c l2 ) + c stray where c stray is the pin capacitance and board or trace pcb-related capacitance. typically, it is between 2 pf and 7 pf. caution: to avoid exceeding the maximum value of c l1 and c l2 (15 pf) it is strongly recommended to use a resonator with a load capacitance c l 7 pf. never use a resonator with a load capacitance of 12.5 pf. example: if the user chooses a resonator with a load capacitance of c l = 6 pf and c stray = 2 pf, then c l1 = c l2 = 8 pf. figure 16. typical applicati on with a 32.768 khz crystal 4. t su(lse) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. this value is m easured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. dle 26&b28 7 26&b,1 i /6( &/ 5 ) 670/[[ n+] uhvrqdwru &/ 5hvrqdwruzlwk lqwhjudwhgfdsdflwruv %ldv frqwuroohg jdlq
docid026175 rev 4 79/128 stm32l162xc/c-a electrical characteristics 111 6.3.7 internal clock source characteristics the parameters given in table 30 are derived from tests performed under the conditions summarized in table 13 . high-speed internal (hsi) rc oscillator low-speed internal (lsi) rc oscillator table 30. hsi oscillator characteristics symbol parameter conditions min typ max unit f hsi frequency v dd = 3.0 v - 16 - mhz trim (1)(2) 1. the trimming step differs depending on the trimming code. it is usually negativ e on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xe0). hsi user-trimmed resolution trimming code is not a multiple of 16 - 0.4 0.7 % trimming code is a multiple of 16 - - 1.5 % acc hsi (2) 2. guaranteed by characterization results. accuracy of the factory-calibrated hsi oscillator v dda = 3.0 v, t a = 25 c -1 (3) 3. guaranteed by test in production. -1 (3) % v dda = 3.0 v, t a = 0 to 55 c -1.5 - 1.5 % v dda = 3.0 v, t a = -10 to 70 c -2 - 2 % v dda = 3.0 v, t a = -10 to 85 c -2.5 - 2 % v dda = 3.0 v, t a = -10 to 105 c -4 - 2 % v dda = 1.65 v to 3.6 v t a = -40 to 105 c -4 - 3 % t su(hsi) (2) hsi oscillator startup time - - 3.7 6 s i dd(hsi) (2) hsi oscillator power consumption - - 100 140 a table 31. lsi oscillato r characteristics symbol parameter min typ max unit f lsi (1) 1. guaranteed by test in production. lsi frequency 26 38 56 khz d lsi (2) 2. this is a deviation for an individual part, once the init ial frequency has been measured. lsi oscillator frequency drift 0c t a 105c -10 - 4 % t su(lsi) (3) 3. guaranteed by design. lsi oscillator startup time - - 200 s i dd(lsi) (3) lsi oscillator power consumption - 400 510 na
electrical characteristics stm32l162xc/c-a 80/128 docid026175 rev 4 multi-speed internal (msi) rc oscillator table 32. msi oscillator characteristics symbol parameter condition typ max unit f msi frequency after factory calibration, done at v dd = 3.3 v and t a = 25 c msi range 0 65.5 - khz msi range 1 131 - msi range 2 262 - msi range 3 524 - msi range 4 1.05 - mhz msi range 5 2.1 - msi range 6 4.2 - acc msi frequency error after factory calibration - 0.5 - % d temp(msi) (1) msi oscillator frequency drift 0 c t a 105 c - 3-% d volt(msi) (1) msi oscillator frequency drift 1.65 v v dd 3.6 v, t a = 25 c --2.5%/v i dd(msi) (2) msi oscillator power consumption msi range 0 0.75 - a msi range 1 1 - msi range 2 1.5 - msi range 3 2.5 - msi range 4 4.5 - msi range 5 8 - msi range 6 15 - t su(msi) msi oscillator startup time msi range 0 30 - s msi range 1 20 - msi range 2 15 - msi range 3 10 - msi range 4 6 - msi range 5 5 - msi range 6, voltage range 1 and 2 3.5 - msi range 6, voltage range 3 5-
docid026175 rev 4 81/128 stm32l162xc/c-a electrical characteristics 111 t stab(msi) (2) msi oscillator stabilization time msi range 0 - 40 s msi range 1 - 20 msi range 2 - 10 msi range 3 - 4 msi range 4 - 2.5 msi range 5 - 2 msi range 6, voltage range 1 and 2 -2 msi range 3, voltage range 3 -3 f over(msi) msi oscillator frequency overshoot any range to range 5 -4 mhz any range to range 6 -6 1. this is a deviation for an individual part, once the init ial frequency has been measured. 2. guaranteed by characterization results. table 32. msi oscillator characteristics (continued) symbol parameter condition typ max unit
electrical characteristics stm32l162xc/c-a 82/128 docid026175 rev 4 6.3.8 pll characteristics the parameters given in table 33 are derived from tests performed under the conditions summarized in table 13 . 6.3.9 memory characteristics the characteristics are given at t a = -40 to 105 c unless otherwise specified. ram memory table 33. pll characteristics symbol parameter value unit min typ max (1) 1. guaranteed by characterization results. f pll_in pll input clock (2) 2. take care of using the appropriate multiplier factors so as to have pll input cloc k values compatible with the range defined by f pll_out . 2- 24mhz pll input clock duty cycle 45 - 55 % f pll_out pll output clock 2 - 32 mhz t lock pll lock time pll input = 16 mhz pll vco = 96 mhz -115 160 s jitter cycle-to-cycle jitter - - 600 ps i dda (pll) current consumption on v dda -220 450 a i dd (pll) current consumption on v dd -120 150 table 34. ram and hardware registers symbol parameter cond itions min typ max unit vrm data retention mode (1) 1. minimum supply voltage without losing data stored in ram (in stop mode or under reset) or in hardware registers (only in stop mode). stop mode (or reset) 1.65 - - v
docid026175 rev 4 83/128 stm32l162xc/c-a electrical characteristics 111 flash memory and data eeprom table 35. flash memory and data eeprom characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design. unit v dd operating voltage read / write / erase -1.65-3.6v t prog programming/ erasing time for byte / word / double word / half-page erasing - 3.28 3.94 ms programming - 3.28 3.94 i dd average current during the whole programming / erase operation t a = 25 c, v dd = 3.6 v - 600 900 a maximum current (peak) during the whole programming / erase operation -1.52.5ma table 36. flash memory and data eeprom endurance and retention symbol parameter conditions value unit min (1) 1. guaranteed by characterization results. typ max n cyc (2) cycling (erase / write) program memory t a = -40c to 105 c 10 -- kcycles cycling (erase / write) eeprom data memory 300 -- t ret (2) 2. characterization is done according to jedec jesd22-a117. data retention (program memory) after 10 kcycles at t a = 85 c t ret = +85 c 30 - - years data retention (eeprom data memory) after 300 kcycles at t a = 85 c 30 - - data retention (program memory) after 10 kcycles at t a = 105 c t ret = +105 c 10 - - data retention (eeprom data memory) after 300 kcycles at t a = 105 c 10 - -
electrical characteristics stm32l162xc/c-a 84/128 docid026175 rev 4 6.3.10 emc characteristics susceptibility tests are perf ormed on a sample basis duri ng device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on t he device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure o ccurs. the failure is indicated by the leds: ? electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ? ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a func tional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 37 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are per formed at component level with a typical application environment and simplified mcu soft ware. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in re lation with the emc level requested for his application. software recommendations the software flowchart must include the m anagement of runaway conditions such as: ? corrupted program counter ? unexpected reset ? critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. table 37. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-4 4a
docid026175 rev 4 85/128 stm32l162xc/c-a electrical characteristics 111 to complete these trials, esd stress can be applie d directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o por ts). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. 6.3.11 electrical sens itivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determ ine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combinati on. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. table 38. emi characteristics symbol parameter conditions monitored frequency band max vs. frequency range unit 4 mhz voltage range 3 16 mhz voltage range 2 32 mhz voltage range 1 s emi peak level v dd = 3.3 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 3 -6 -5 dbv 30 to 130 mhz 18 4 -7 130 mhz to 1ghz 15 5 -7 sae emi level 2.5 2 1 - table 39. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. guaranteed by characterization results. unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22-a114 2 2000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to jesd22-c101 iii 500 v
electrical characteristics stm32l162xc/c-a 86/128 docid026175 rev 4 static latch-up two complementary static te sts are required on six pa rts to assess the latch-up performance: ? a supply overvoltage is applied to each power supply pin ? a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.12 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection acci dentally happens, susceptibility tests are performed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode . while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of ?5 a/+0 a range), or ot her functional failure (for ex ample reset occurrence oscillator frequency deviation, lcd levels). the test results are given in the table 41 . table 40. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a table 41. i/o current in jection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on all 5 v tolerant (ft) pins -5 (1) 1. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. na ma injected current on boot0 -0 na injected current on any other pin -5 (1) +5
docid026175 rev 4 87/128 stm32l162xc/c-a electrical characteristics 111 6.3.13 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 48 are derived from tests performed under the conditions summarized in table 13 . all i/os are cmos and ttl compliant. table 42. i/o static characteristics symbol parameter conditions min typ max unit v il input low level voltage - - - 0.3v dd (1) v v ih input high level voltage standard i/o 0.7 v dd -- ft i/o - - boot0 i/o - - v hys i/o schmitt trigger voltage hysteresis (2) standard i/o - 10% v dd (3) - i lkg input leakage current (4) v ss v in v dd i/os with lcd --50 na v ss v in v dd i/os with analog switches --50 v ss v in v dd i/os with analog switches and lcd --50 v ss v in v dd i/os with usb - - 250 v ss v in v dd standard i/os --50 ft i/o v dd v in 5v --10ua r pu weak pull-up equivalent resistor (1)(5) v in = v ss 30 45 60 k r pd weak pull-down equivalent resistor (5) v in = v dd 30 45 60 k c io i/o pin capacitance - - 5 - pf 1. guaranteed by test in production 2. hysteresis voltage between schmitt trigger switching levels. guarant eed by characterization results. 3. with a minimum of 200 mv. guarant eed by characterization results. 4. the max. value may be exceeded if negative current is injected on adjacent pins. 5. pull-up and pull-down resistors are designed with a tr ue resistance in series with a switchable pmos/nmos. .
electrical characteristics stm32l162xc/c-a 88/128 docid026175 rev 4 output driving current the gpios (general purpose input/outputs) can sink or source up to 8 ma, and sink or source up to 20 ma with the non-standard v ol /v oh specifications given in table 43 . in the user application, the number of i/o pi ns which can drive curr ent must be limited to respect the absolute maximum rating specified in section 6.2 : ? the sum of the currents sourced by all the i/os on v dd, plus the maximum run consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating i vdd( ) (see table 11 ). ? the sum of the currents sunk by all the i/os on v ss plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating i vss( ) (see table 11 ). output voltage levels unless otherwise specified, the parameters given in table 43 are derived from tests performed under the conditions summarized in table 13 . all i/os are cmos and ttl compliant. table 43. output voltage characteristics symbol parameter conditions min max unit v ol (1)(2) 1. the i io current sunk by the device must always res pect the absolute maximum rating specified in table 11 and the sum of i io (i/o ports and control pins) must not exceed i vss . 2. guaranteed by test in production. output low level voltage for an i/o pin i io = 8 ma 2.7 v < v dd < 3.6 v -0.4 v v oh (2)(3) 3. the i io current sourced by the device must always re spect the absolute maximum rating specified in table 11 and the sum of i io (i/o ports and control pins) must not exceed i vdd . output high level voltage for an i/o pin v dd -0.4 - v ol (3)(4) output low level voltage for an i/o pin i io = 4 ma 1.65 v < v dd < 3.6 v -0.45 v oh (3)(4) output high level voltage for an i/o pin v dd -0.45 - v ol (1)(4) 4. guaranteed by characterization results. output low level voltage for an i/o pin i io = 20 ma 2.7 v < v dd < 3.6 v -1.3 v oh (3)(4) output high level voltage for an i/o pin v dd -1.3 -
docid026175 rev 4 89/128 stm32l162xc/c-a electrical characteristics 111 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 17 and table 44 , respectively. unless otherwise specified, the parameters given in table 44 are derived from tests performed under the conditions summarized in table 13 . table 44. i/o ac characteristics (1) ospeedrx [1:0] bit value (1) symbol parameter conditions min max (2) unit 00 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 400 khz c l = 50 pf, v dd = 1.65 v to 2.7 v - 400 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 625 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 625 01 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 2 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 1 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 125 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 250 10 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 10 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 2 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 25 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 125 11 f max(io)out maximum frequency (3) c l = 30 pf, v dd = 2.7 v to 3.6 v - 50 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 8 t f(io)out t r(io)out output rise and fall time c l = 30 pf, v dd = 2.7 v to 3.6 v - 5 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 30 -t extipw pulse width of external signals detected by the exti controller -8- 1. the i/o speed is configured using the ospeedrx[1:0] bits. refer to the stm32l151xx, stm32l152xx and stm32l162xx reference manual for a description of gpio port configuration register. 2. guaranteed by design. 3. the maximum frequency is defined in figure 17 .
electrical characteristics stm32l162xc/c-a 90/128 docid026175 rev 4 figure 17. i/o ac charac teristics definition 6.3.14 nrst pin characteristics the nrst pin input driver uses cmos technology. it is connected to a permanent pull-up resistor, r pu (see ta ble 45 ) unless otherwise specified, the parameters given in table 45 are derived from tests performed under the conditions summarized in table 13 . aic    t r)/ out /54054 %84%2.!, /.p& -aximumfrequencyisachievedift r t f ?  4andifthedutycycleis     whenloadedbyp& 4 t f)/ out table 45. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) nrst input low level voltage ---0.3 v dd v v ih(nrst) (1) nrst input high level voltage - 0.7 v dd -- v ol(nrst) (1) nrst output low level voltage i ol = 2 ma 2.7 v < v dd < 3.6 v -- 0.4 i ol = 1.5 ma 1.65 v < v dd < 2.7 v -- v hys(nrst) (1) nrst schmitt trigger voltage hysteresis - - 10%v dd (2) -mv r pu weak pull-up equivalent resistor (3) v in = v ss 30 45 60 k v f(nrst) (1) nrst input filtered pulse ---50ns v nf(nrst) (3) nrst input not filtered pulse -350--ns 1. guaranteed by design. 2. with a minimum of 200 mv. 3. the pull-up is designed with a true re sistance in series with a switchable pmos . this pmos contribution to the series resistance is around 10%.
docid026175 rev 4 91/128 stm32l162xc/c-a electrical characteristics 111 figure 18. recommended nrst pin protection 1. the reset network protects t he device against par asitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 45 . otherwise the reset will not be taken into account by the device. 6.3.15 tim time r characteristics the parameters given in the table 46 are guaranteed by design. refer to section 6.3.13: i/o port characteristics for details on the input/output ction characteristics (output compare, input capture, external clock, pwm output). dle 670/[[ 5 38 1567  9 '' )lowhu ,qwhuqdouhvhw ?) ([whuqdouhvhwflufxlw  table 46. timx (1) characteristics 1. timx is used as a general term to refer to the tim2, tim3 and tim4 timers. symbol parameter conditions min max unit t res(tim) timer resolution time -1-t timxclk f timxclk = 32 mhz 31.25 - ns f ext timer external clock frequency on ch1 to ch4 -0f timxclk /2 mhz f timxclk = 32 mhz 0 16 mhz res tim timer resolution - 16 bit t counter 16-bit counter clock period when internal clock is selected (timer?s prescaler disabled) - 1 65536 t timxclk f timxclk = 32 mhz 0.0312 2048 s t max_count maximum possible count - - 65536 65536 t timxclk f timxclk = 32 mhz - 134.2 s
electrical characteristics stm32l162xc/c-a 92/128 docid026175 rev 4 6.3.16 communications interfaces i 2 c interface characteristics the device i 2 c interface meets the requirements of the standard i 2 c communication protocol with the following restrictions: sda and scl are not ?true? open-drain i/o pins. when configured as open-drain, the pm os connected between the i/o pin and v dd is disabled, but is still present. the i 2 c characteristics are described in table 47 . refer also to section 6.3.13: i/o port characteristics for more details on the input/output ction characteristics (sda and scl) . table 47. i 2 c characteristics symbol parameter standard mode i 2 c (1) (2) 1. guaranteed by design. fast mode i 2 c (1) (2) 2. f pclk1 must be at least 2 mhz to achieve standard mode i 2 c frequencies. it must be at least 4 mhz to achieve fast mode i2c frequencies. it must be a multiple of 10 mhz to reach the 400 khz maximum i2c fast mode clock. unit min max min max t w(scll) scl clock low time 4.7 - 1.3 - s t w(sclh) scl clock high time 4.0 - 0.6 - t su(sda) sda setup time 250 - 100 - ns t h(sda) sda data hold time - 3450 (3) -900 (3) 3. the maximum data hold time has only to be met if the interface does not stretch the low period of scl signal. t r(sda) t r(scl) sda and scl rise time - 1000 - 300 t f(sda) t f(scl) sda and scl fall time - 300 - 300 t h(sta) start condition hold time 4.0 - 0.6 - s t su(sta) repeated start condition setup time 4.7 - 0.6 - t su(sto) stop condition setup time 4.0 - 0.6 - s t w(sto:sta) stop to start condition time (bus free) 4.7 - 1.3 - s c b capacitive load for each bus line - 400 - 400 pf t sp pulse width of spikes that are suppressed by the analog filter 050 (4) 4. the minimum width of the spikes fi ltered by the analog filter is above t sp(max) . 050 (4) ns
docid026175 rev 4 93/128 stm32l162xc/c-a electrical characteristics 111 figure 19. i 2 c bus ac waveforms and measurement circuit 1. r s = series protection resistor. 2. r p = external pull-up resistor. 3. v dd_i2c is the i2c bus power supply. 4. measurement points are done at cmos levels: 0.3v dd and 0.7v dd. table 48. scl frequency (f pclk1 = 32 mhz, v dd = v dd_i2c = 3.3 v) (1)(2) 1. r p = external pull-up resistance, f scl = i 2 c speed. 2. for speeds around 200 khz, the tole rance on the achieved speed is of 5%. for other speed ranges, the tolerance on the achieved speed is 2%. these variations depend on the accuracy of the external components used to design the application. f scl (khz) i2c_ccr value r p = 4.7 k 400 0x801b 300 0x8024 200 0x8035 100 0x00a0 50 0x0140 20 0x0320 ]??? ^ dzd ^ z ^ z w / ? ? z w z ^ s z/? s z/? ^dd??>?? ^ ^> ? (~^ ? ?~^ ^> ? z~^d ? ~^<, ? ~^<> ? ?~^ ? ?~^< ? (~^< ? z~^ ^ dzdzwd ^ dzd ? ?~^d ? ?~^dk ^dkw ? ?~^dw^dk
electrical characteristics stm32l162xc/c-a 94/128 docid026175 rev 4 spi characteristics unless otherwise specified, th e parameters given in the following table are derived from tests performed under the conditions summarized in table 13 . refer to section 6.3.12: i/o current inje ction characteristics for more details on the input/output alternate function char acteristics (nss, sck, mosi, miso). table 49. spi characteristics (1) symbol parameter conditions min max (2) unit f sck 1/t c(sck) spi clock frequency master mode - 16 mhz slave mode - 16 slave transmitter - 12 (3) t r(sck) (2) t f(sck) (2) spi clock rise and fall time ca pacitive load: c = 30 pf - 6 ns ducy(sck) spi slave input clock duty cycle slave mode 30 70 % t su(nss) nss setup time slave mode 4t hclk - ns t h(nss) nss hold time slave mode 2t hclk - t w(sckh) (2) t w(sckl) (2) sck high and low time master mode t sck /2 ? 5t sck /2+3 t su(mi) (2) data input setup time master mode 5 - t su(si) (2) slave mode 6 - t h(mi) (2) data input hold time master mode 5 - t h(si) (2) slave mode 5 - t a(so) (4) data output access time slave mode 0 3t hclk t v(so) (2) data output valid time slave mode - 33 t v(mo) (2) data output valid time master mode - 6.5 t h(so) (2) data output hold time slave mode 17 - t h(mo) (2) master mode 0.5 - 1. the characteristics above are given for voltage range 1. 2. guaranteed by characterization results. 3. the maximum spi clock frequency in slave transmitter mode is given for an spi sl ave input clock duty cycle (ducy(sck)) ranging between 40 to 60%. 4. min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
docid026175 rev 4 95/128 stm32l162xc/c-a electrical characteristics 111 figure 20. spi timing diagram - slave mode and cpha = 0 figure 21. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd. dlf 6&.,qsxw 166lqsxw w 68 166 w f 6&. w k 166 &3+$  &32/  &3+$  &32/  w z 6&.+ w z 6&./ w 9 62 w k 62 w u 6&. w i 6&. w glv 62 w d 62 0,62 287387 026, ,1387 06%287 %,7287 /6%287 w vx 6, w k 6, 06%,1 %,7,1 /6%,1 dle 166lqsxw w 68 166 w f 6&. w k 166 6&.lqsxw &3+$  &32/  &3+$  &32/  w z 6&.+ w z 6&./ w d 62 w y 62 w k 62 w u 6&. w i 6&. w glv 62 0,62 287387 026, ,1387 w vx 6, w k 6, 06%287 06%,1 %,7287 /6%287 /6%,1 %,7,1
electrical characteristics stm32l162xc/c-a 96/128 docid026175 rev 4 figure 22. spi timing diagram - master mode (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd. dlf 6&.2xwsxw &3+$  026, 287387 0,62 ,13 87 &3+$  /6%287 /6%,1 &32/  &32/  % , 7287 166lqsxw w f 6&. w z 6&.+ w z 6&./ w u 6&. w i 6&. w k 0, +ljk 6&.2xwsxw &3+$  &3+$  &32/  &32/  w vx 0, w y 02 w k 02 06%,1 %,7,1 06%287
docid026175 rev 4 97/128 stm32l162xc/c-a electrical characteristics 111 usb characteristics the usb interface is usb-if certified (full speed). figure 23. usb timings: definition of data signal rise and fall time table 50. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design. usb transceiver startup time 1 s table 51. usb dc electrical characteristics symbol parameter c onditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage - 3.0 3.6 v v di (2) 2. guaranteed by characterization results. differential input sensitivity i(usb_dp, usb_dm) 0.2 - v v cm (2) differential common mode range includes v di range 0.8 2.5 v se (2) single ended receiver threshold - 1.3 2.0 output levels v ol (3) 3. guaranteed by test in production. static output level low r l of 1.5 k to 3.6 v (4) 4. r l is the load connected on the usb drivers. -0.3 v v oh (3) static output level high r l of 15 k to v ss (4) 2.8 3.6 table 52. usb: full speed electrical characteristics driver characteristics (1) symbol parameter conditions min max unit t r rise time (2) c l = 50 pf 420ns t f fall time (2) c l = 50 pf 4 20 ns dl w i 66 w u 9 &56 9 'liihuhqwldo gdwdolqhv &urvvryhu srlqwv
electrical characteristics stm32l162xc/c-a 98/128 docid026175 rev 4 i2s characteristics note: refer to the i2s section of the product refe rence manual for more details about the sampling frequency (fs), f mck , f ck and d ck values. these values reflect only the digital peripheral behavior, source clock precision might slig htly change them. dck depends mainly on the t rfm rise/ fall time matching t r /t f 90 110 % v crs output signal crossover voltage 1.3 2.0 v 1. guaranteed by design. 2. measured from 10% to 90% of the data signal. for more detailed informations, please refer to usb specification - chapter 7 (version 2.0). table 53. i2s characteristics symbol parameter conditions min max unit f mck i2s main clock output 256 x 8k 256xfs (1) 1. the maximum for 256xfs is 8 mhz mhz f ck i2s clock frequency master data: 32 bits - 64xfs mhz slave data: 32 bits - 64xfs d ck i2s clock frequency duty cycle slave receiver, 48khz 30 70 % t r(ck) i2s clock rise time capacitive load cl=30pf - 8 ns t f(ck) i2s clock fall time 8 t v(ws) ws valid time master mode 4 24 t h(ws) ws hold time master mode 0 - t su(ws) ws setup time slave mode 15 - t h(ws) ws hold time slave mode 0 - t su(sd_mr) data input setup time master receiver 8 - t su(sd_sr) data input setup time slave receiver 9 - t h(sd_mr) data input hold time master receiver 5 - t h(sd_sr) slave receiver 4 - t v(sd_st) data output valid time slave transmitter (after enable edge) -64 t h(sd_st) data output hold time slave transmitter (after enable edge) 22 - t v(sd_mt) data output valid time master transmitter (after enable edge) -12 t h(sd_mt) data output hold time master transmitter (after enable edge) 8- table 52. usb: full speed electrical characteristics (continued) driver characteristics (1) symbol parameter conditions min max unit
docid026175 rev 4 99/128 stm32l162xc/c-a electrical characteristics 111 odd bit value, digital contribution leads to a min of (i2sdiv/(2*i2sdiv+odd) and a max of (i2sdiv+odd)/(2*i2sdiv+odd). fs max is supported for each mode/condition. figure 24. i 2 s slave timing diagram (philips protocol) (1) 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. figure 25. i 2 s master timing diagram (philips protocol) (1) 1. guaranteed by characterization results. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. &.,qsxw &32/  &32/  w f &. :6lqsxw 6' wudqvplw 6' uhfhlyh w z &.+ w z &./ w vx :6 w y 6'b67 w k 6'b67 w k :6 w vx 6'b65 w k 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw dle /6%uhfhlyh  /6%wudqvplw  #+output #0/, #0/, t c#+ 73output 3$ receive 3$ transmit t w#+( t w#+, t su3$?-2 t v3$?-4 t h3$?-4 t h73 t h3$?-2 -3"receive "itnreceive ,3"receive -3"transmit "itntransmit ,3"transmit aib t f#+ t r#+ t v73 ,3"receive  ,3"transmit 
electrical characteristics stm32l162xc/c-a 100/128 docid026175 rev 4 6.3.17 12-bit adc characteristics unless otherwise specified, the parameters given in table 55 are guaranteed by design. table 54. adc clock frequency symbol parameter conditions min max unit f adc adc clock frequency voltage range 1 & 2 2.4 v v dda 3.6 v v ref+ = v dda 0.480 16 mhz v ref+ < v dda v ref+ > 2.4 v 8 v ref+ < v dda v ref+ 2.4 v 4 1.8 v v dda 2.4 v v ref+ = v dda 8 v ref+ < v dda 4 voltage range 3 4 table 55. adc characteristics symbol parameter condit ions min typ max unit v dda power supply - 1.8 - 3.6 v v ref+ positive reference voltage - 1.8 (1) -v dda v ref- negative reference voltage - - v ssa - i vdda current on the v dda input pin - - 1000 1450 a i vref (2) current on the v ref input pin peak - 400 700 average 450 v ain conversion voltage range (3) -0 (4) -v ref+ v f s 12-bit sampling rate direct channels - - 1 msps multiplexed channels - - 0.76 10-bit sampling rate direct channels - - 1.07 msps multiplexed channels - - 0.8 8-bit sampling rate direct channels - - 1.23 msps multiplexed channels - - 0.89 6-bit sampling rate direct channels - - 1.45 msps multiplexed channels - - 1
docid026175 rev 4 101/128 stm32l162xc/c-a electrical characteristics 111 t s (5) sampling time direct channels 2.4 v v dda 3.6 v 0.25 - - s multiplexed channels 2.4 v v dda 3.6 v 0.56 - - direct channels 1.8 v v dda 2.4 v 0.56 - - multiplexed channels 1.8 v v dda 2.4 v 1-- -4-3841/f adc t conv total conversion time (including sampling time) f adc = 16 mhz 1 - 24.75 s - 4 to 384 (sampling phase) +12 (successive approximation) 1/f adc c adc internal sample and hold capacitor direct channels - 16 - pf multiplexed channels - - f trig external trigger frequency regular sequencer 12-bit conversions - - tconv+1 1/f adc 6/8/10-bit conversions - - tconv 1/f adc f trig external trigger frequency injected sequencer 12-bit conversions - - tconv+2 1/f adc 6/8/10-bit conversions - - tconv+1 1/f adc r ain (6) signal source impedance - - 50 k t lat injection trigger conversion latency f adc = 16 mhz 219 - 281 ns -3.5-4.51/f adc t latr regular trigger conversion latency f adc = 16 mhz 156 - 219 ns -2.5-3.51/f adc t stab power-up time - - - 3.5 s 1. the vref+ input can be grounded if neither the adc nor the dac are used (this allows to shut down an external voltage reference). 2. the current consumption through vref is composed of two parameters: - one constant (max 300 a) - one variable (max 400 a), only during samp ling time + 2 firs t conversion pulses so, peak consumption is 300+400 = 700 a and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 a at 1msps 3. v ref+ can be internally connected to v dda and v ref- can be internally connected to v ssa , depending on the package. refer to section 4: pin descriptions for further details. 4. v ssa or v ref- must be tied to ground. 5. minimum sampling time is reached for an external input impedance limited to a value as defined in table 57: maximum source impedance rain max . 6. external impedance has another high value limitati on when using short sampling time as defined in table 57: maximum source impedance rain max . table 55. adc characteristics (continued) symbol parameter condit ions min typ max unit
electrical characteristics stm32l162xc/c-a 102/128 docid026175 rev 4 table 56. adc accuracy (1)(2) symbol parameter test conditions min (3) typ max (3) unit et total unadjusted error 2.4 v v dda 3.6 v 2.4 v v ref+ 3.6 v f adc = 8 mhz, r ain = 50 t a = -40 to 105 c -24 lsb eo offset error - 1 2 eg gain error - 1.5 3.5 ed differential linearity error - 1 2 el integral linearity error - 1.7 3 enob effective number of bits 2.4 v v dda 3.6 v v dda = v ref+ f adc = 16 mhz, r ain = 50 t a = -40 to 105 c f input =10khz 9.2 10 - bits sinad signal-to-noise and distortion ratio 57.5 62 - db snr signal-to-noise ratio 57.5 62 - thd total harmonic distortion - -70 -65 enob effective number of bits 1.8 v v dda 2.4 v v dda = v ref+ f adc = 8 mhz or 4 mhz, r ain = 50 t a = -40 to 105 c f input =10khz 9.2 10 - bits sinad signal-to-noise and distortion ratio 57.5 62 - db snr signal-to-noise ratio 57.5 62 - thd total harmonic distortion - -70 -65 et total unadjusted error 2.4 v v dda 3.6 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c -46.5 lsb eo offset error - 2 4 eg gain error - 4 6 ed differential linearity error - 1 2 el integral linearity error - 1.5 3 et total unadjusted error 1.8 v v dda 2.4 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c -23 lsb eo offset error - 1 1.5 eg gain error - 1.5 2 ed differential linearity error - 1 2 el integral linearity error - 1 1.5 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting a n egative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. any positive injection current with in the limits specified for i inj(pin) and i inj(pin) in section 6.3.12 does not affect the adc accuracy. 3. guaranteed by characterization results.
docid026175 rev 4 103/128 stm32l162xc/c-a electrical characteristics 111 figure 26. adc accuracy characteristics figure 27. typical connecti on diagram using the adc 1. refer to table 57: maximum source impedance rain max for the value of r ain and table 55: adc characteristics for the value of c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced.  ([dpsohridqdfwx dowudqvih ufxuyh  7khlghdowudqvihufx uyh  (qgsrlqwfruuhodwlrqolqh                       dlh ( 7  7rwdoxqdgmxvwhg(uurupd[lpxpghyldwlrq ehwzhhqwkhdfwxdodqgwkhlghdowudqvihufxuyhv ( 2  2iivhw(uurughyldwlrqehwzhhqwkhiluvwdfwxdo wudqvlwlrqdqgwkhodvwdfwxdorqh ( *  *dlq(uurughyldwlrqehwzhhqwkhodvwlghdo wudqvlwlrqdqgwkhodvwdfwxdorqh ( '  'liihuhqwldo/lqhdulw\(uurupd[lpxpghyldwlrq ehwzhhqdfwxdovwhsvdqgwkhlghdorqh ( /  ,qwhjudo/lqhdulw\(uurupd[lpxpghyldwlrq ehwzhhqdq\dfwxdowudqvlwlrqdqgwkhhqgsrlqw fruuhodwlrqolqh 9 66$ 9 ''$ /6% ,'($/ ( ' ( / ( 2 ( 7 ( * >/6% ,'($/   9 5()  9 ''$  rughshqglqjrqsdfndjh dlh 670/[[ 9 ''$ $,1[ ,/?q$ 5 $,1  & sdudvlwlf 9 $,1 elw frqyhuwhu & $'&  6dpsohdqgkrog $'&frqyhuwhu
electrical characteristics stm32l162xc/c-a 104/128 docid026175 rev 4 figure 28. maximum dynamic current consumption on v ref+ supply pin during adc conversion general pcb design guidelines power supply decoupling should be performed as shown in figure 10 . the applicable procedure depends on whether v ref+ is connected to v dda or not. the 100 nf capacitors should be ceramic (good quality). they should be placed as close as possible to the chip. adc clock sampling (n cycles) conversion (12 cycles ) i ref+ 300a 700a ms36686v1 table 57. maximum source impedance r ain max (1) ts (s) r ain max (k ) ts (cycles) f adc =16 mhz (2) multiplexed channels direct channels 2.4 v < v dda < 3.6 v 1.8 v < v dda < 2.4 v 2.4 v < v dda < 3.6 v 1.8 v < v dda < 2.4 v 0.25 not allowed not allowed 0.7 not allowed 4 0.5625 0.8 not allowed 2.0 1.0 9 1 2.0 0.8 4.0 3.0 16 1.5 3.0 1.8 6.0 4.5 24 3 6.8 4.0 15.0 10.0 48 6 15.0 10.0 30.0 20.0 96 12 32.0 25.0 50.0 40.0 192 24 50.0 50.0 50.0 50.0 384 1. guaranteed by design. 2. number of samples calculated for f adc = 16 mhz. for f adc = 8 and 4 mhz the number of sampling cycles can be reduced with respect to the minimu m sampling time ts (s),
docid026175 rev 4 105/128 stm32l162xc/c-a electrical characteristics 111 6.3.18 dac electri cal specifications data guaranteed by design, unless otherwise specified. table 58. dac characteristics symbol parameter conditions min typ max unit v dda analog supply voltage - 1.8 - 3.6 v v ref+ reference supply voltage v ref+ must always be below v dda 1.8 - 3.6 v ref- lower reference voltage - v ssa i ddvref+ (1) current consumption on v ref+ supply v ref+ = 3.3 v no load, middle code (0x800) - 130 220 a no load, worst code (0x000) - 220 350 i dda (1) current consumption on v dda supply v dda = 3.3 v no load, middle code (0x800) - 210 320 no load, worst code (0xf1c) - 320 520 r l (2) resistive load dac output buffer on 5- - k c l (2) capacitive load - - 50 pf r o output impedance dac output buffer off 12 16 20 k v dac_out voltage on dac_out output dac output buffer on 0.2 - v dda ? 0.2 v dac output buffer off 0.5 - v ref+ ? 1lsb mv dnl (1) differential non linearity (3) c l 50 pf, r l 5 k dac output buffer on -1.5 3 lsb no r l , c l 50 pf dac output buffer off -1.5 3 inl (1) integral non linearity (4) c l 50 pf, r l 5 k dac output buffer on -2 4 no r l , c l 50 pf dac output buffer off -2 4 offset (1) offset error at code 0x800 (5) c l 50 pf, r l 5 k dac output buffer on -10 25 no r l , c l 50 pf dac output buffer off -5 8 offset1 (1) offset error at code 0x001 (6) no r l , c l 50 pf dac output buffer off -1.5 5
electrical characteristics stm32l162xc/c-a 106/128 docid026175 rev 4 doffset/dt (1) offset error temperature coefficient (code 0x800) v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -20 -10 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on 020 50 gain (1) gain error (7) c l 50 pf, r l 5 k dac output buffer on - +0.1 / -0.2% +0.2 / -0.5% % no r l , c l 50 pf dac output buffer off - +0 / -0.2% +0 / -0.4% dgain/dt (1) gain error temperature coefficient v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -10 -2 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on -40 -8 0 tue (1) total unadjusted error c l 50 pf, r l 5 k dac output buffer on -12 30 lsb no r l , c l 50 pf dac output buffer off -8 12 t settling settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till dac_out reaches final value 1lsb c l 50 pf, r l 5 k - 7 12 s update rate max frequency for a correct dac_out change (95% of final value) with 1 lsb variation in the input code c l 50 pf, r l 5 k - - 1 msps t wakeup wakeup time from off state (setting the enx bit in the dac control register) (8) c l 50 pf, r l 5 k - 9 15 s psrr+ v dda supply rejection ratio (static dc measurement) c l 50 pf, r l 5 k - -60 -35 db 1. data based on characterization results. 2. connected between dac_out and v ssa . 3. difference between two c onsecutive codes - 1 lsb. table 58. dac characteristics (continued) symbol parameter conditions min typ max unit
docid026175 rev 4 107/128 stm32l162xc/c-a electrical characteristics 111 figure 29. 12-bit buffered /non-buffered dac 1. the dac integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external oper ational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. 6.3.19 operational am plifier char acteristics 4. difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. 5. difference between the value measured at code (0x800) and the ideal value = v ref+ /2. 6. difference between the value measured at code (0x001) and the ideal value. 7. difference between ideal slope of t he transfer function and measured slope co mputed from code 0x000 and 0xfff when buffer is off, and from code giving 0.2 v and (v dda ? 0.2) v when buffer is on. 8. in buffered mode, the output can overshoot above the final value for low input code (starting from min value). 5 / & / %xiihuhg1rqexiihuhg'$& '$&b287[ %xiihu  elw gljlwdowr dqdorj frqyhuwhu ai6 table 59. operational amplifier characteristics symbol parameter condition (1) min (2) typ max (2) unit cmir common mode input range - 0 - v dd vi offset input offset voltage maximum calibration range --- 15 mv after offset calibration --- 1.5 vi offset input offset voltage drift normal mode - - - 40 v/c low-power mode - - - 80 i ib input current bias dedicated input 75 c --1 na general purpose input --10 i load drive current normal mode - - - 500 a low-power mode - - - 100 i dd consumption normal mode no load, quiescent mode - 100 220 a low-power mode - 30 60 cmrr common mode rejection ration normal mode - - -85 - db low-power mode - - -90 -
electrical characteristics stm32l162xc/c-a 108/128 docid026175 rev 4 psrr power supply rejection ratio normal mode dc --85- db low-power mode - -90 - gbw bandwidth normal mode v dd >2.4 v 400 1000 3000 khz low-power mode 150 300 800 normal mode v dd <2.4 v 200 500 2200 low-power mode 70 150 800 sr slew rate normal mode v dd >2.4 v (between 0.1 v and v dd -0.1 v) - 700 - v/ms low-power mode v dd >2.4 v - 100 - normal mode v dd <2.4 v - 300 - low-power mode - 50 - ao open loop gain normal mode 55 100 - db low-power mode 65 110 - r l resistive load normal mode v dd <2.4 v 4- - k low-power mode 20 - - c l capacitive load - - - 50 pf voh sat high saturation voltage normal mode i load = max or r l = min v dd - 100 -- mv low-power mode v dd -50 - - vol sat low saturation voltage normal mode - - 100 low-power mode - - 50 ? m phase margin - - 60 - gm gain margin - - -12 - db t offtrim offset trim time: during calibration, minimum time needed between two steps to have 1 mv accuracy --1-ms t wakeup wakeup time normal mode c l 50 pf, r l 4 k -10- s low-power mode c l 50 pf, r l 20 k -30- 1. operating conditions are limited to junc tion temperature (0 c to 105 c) when v dd is below 2 v. otherwise to the full ambient temperature range (-40 c to 85 c, -40 c to 105 c). 2. guaranteed by characterization results. table 59. operational amplifier characteristics (continued) symbol parameter condition (1) min (2) typ max (2) unit
docid026175 rev 4 109/128 stm32l162xc/c-a electrical characteristics 111 6.3.20 temperature sensor characteristics 6.3.21 comparator table 60. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at temperature of 30 c 5 c v dda = 3 v 10 mv 0x1ff8 00fa - 0x1ff8 00fb ts_cal2 ts adc raw data acquired at temperature of 110 c 5 c v dda = 3 v 10 mv 0x1ff8 00fe - 0x1ff8 00ff table 61. temperature sensor characteristics symbol parameter min typ max unit t l (1) 1. guaranteed by characterization results. v sense linearity with temperature - 1 2c avg_slope (1) average slope 1.48 1.61 1.75 mv/c v 110 voltage at 110c 5c (2) 2. measured at v dd = 3 v 10 mv. v110 adc conversion result is stored in the ts_cal2 byte. 612 626.8 641.5 mv i dda (temp) (3) current consumption - 3.4 6 a t start (3) 3. guaranteed by design. startup time - - 10 s t s_temp (3) adc sampling time when reading the temperature 4- - table 62. comparator 1 characteristics symbol parameter conditions min (1) typ max (1) unit v dda analog supply voltage - 1.65 3.6 v r 400k r 400k value - - 400 - k r 10k r 10k value - - 10 - v in comparator 1 input voltage range -0.6-v dda v t start comparator startup time - - 7 10 s td propagation delay (2) --310 voffset comparator offset - - 3 10 mv d voffset /dt comparator offset variation in worst voltage stress conditions v dda = 3.6 v v in+ = 0 v v in- = v refint t a = 25 c 0 1.5 10 mv/1000 h i comp1 current consumption (3) - - 160 260 na
electrical characteristics stm32l162xc/c-a 110/128 docid026175 rev 4 1. guaranteed by characterization results. 2. the delay is characterized for 100 mv input step wi th 10 mv overdrive on the inverting input, the non- inverting input set to the reference. 3. comparator consumption only. internal reference voltage not included. table 63. comparator 2 characteristics symbol parameter conditions min typ max (1) 1. guaranteed by characterization results. unit v dda analog supply voltage - 1.65 - 3.6 v v in comparator 2 input voltage range - 0 - v dda v t start comparator startup time fast mode - 15 20 s slow mode - 20 25 t d slow propagation delay (2) in slow mode 2. the delay is characterized for 100 mv input step with 10 mv overdrive on the inverting input, the non- inverting input set to the reference. 1.65 v v dda 2.7 v - 1.8 3.5 2.7 v v dda 3.6 v - 2.5 6 t d fast propagation delay (2) in fast mode 1.65 v v dda 2.7 v - 0.8 2 2.7 v v dda 3.6 v - 1.2 4 v offset comparator offset error - 4 20 mv dthreshold/ dt threshold voltage temperature coefficient v dda = 3.3v t a = 0 to 50 c v- =v refint , 3/4 v refint , 1/2 v refint , 1/4 v refint . -15100 ppm /c i comp2 current consumption (3) 3. comparator consumption only. internal reference voltage (necessary for comparator operation) is not included. fast mode - 3.5 5 a slow mode - 0.5 2
docid026175 rev 4 111/128 stm32l162xc/c-a electrical characteristics 111 6.3.22 lcd controller the device embeds a built-in st ep-up converter to provide a constant lcd reference voltage independently from the v dd voltage. an external capacitor c ext must be connected to the v lcd pin to decouple this converter. table 64. lcd controller characteristics symbol parameter min typ max unit v lcd lcd external voltage - - 3.6 v v lcd0 lcd internal reference voltage 0 - 2.6 - v lcd1 lcd internal reference voltage 1 - 2.73 - v lcd2 lcd internal reference voltage 2 - 2.86 - v lcd3 lcd internal reference voltage 3 - 2.98 - v lcd4 lcd internal reference voltage 4 - 3.12 - v lcd5 lcd internal reference voltage 5 - 3.26 - v lcd6 lcd internal reference voltage 6 - 3.4 - v lcd7 lcd internal reference voltage 7 - 3.55 - c ext v lcd external capacitance 0.1 - 2 f i lcd (1) 1. lcd enabled with 3 v internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no lcd connected. supply current at v dd = 2.2 v - 3.3 - a supply current at v dd = 3.0 v - 3.1 - r htot (2) 2. guaranteed by design. low drive resistive network overall value 5.28 6.6 7.92 m r l (2) high drive resistive network total value 192 240 288 k v 44 segment/common highest level voltage - - v lcd v v 34 segment/common 3/4 level voltage - 3/4 v lcd - v v 23 segment/common 2/3 level voltage - 2/3 v lcd - v 12 segment/common 1/2 level voltage - 1/2 v lcd - v 13 segment/common 1/3 level voltage - 1/3 v lcd - v 14 segment/common 1/4 level voltage - 1/4 v lcd - v 0 segment/common lowest level voltage 0 - - vxx (3) 3. guaranteed by characterization results. segment/common level voltage error t a = -40 to 105 c -- 50 mv
package information stm32l162xc/c-a 112/128 docid026175 rev 4 7 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark. 7.1 lqfp144, 20 x 20 mm, 144-pin low-profil e quad flat package information figure 30. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package outline 1. drawing is not to scale. e )$%.4)&)#!4)/. 0). '!5'%0,!.% mm 3%!4).' 0,!.% $ $ $ % % % + ccc # #         !?-%?6 ! ! ! , , c b !
docid026175 rev 4 113/128 stm32l162xc/c-a package information 127 table 65. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 21.800 22.000 22.200 0.8583 0.8661 0.8740 d1 19.800 20.000 20.200 0.7795 0.7874 0.7953 d3 - 17.500 - - 0.6890 - e 21.800 22.000 22.200 0.8583 0.8661 0.8740 e1 19.800 20.000 20.200 0.7795 0.7874 0.7953 e3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 03.57 03.57 ccc - - 0.080 - - 0.0031
package information stm32l162xc/c-a 114/128 docid026175 rev 4 figure 31. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package recommended footprint 1. dimensions are in millimeters. marking of engineering samples the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. figure 32. lqfp144, 20 x 20 mm, 144-pin lo w-profile quad flat package top view example 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering         dlh         -36 3lq lghqwlilhu 3 5hylvlrqfrgh 45.-;$5 3urgxfwlghqwlilfdwlrq  'dwhfrgh :88
docid026175 rev 4 115/128 stm32l162xc/c-a package information 127 samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity 7.2 lqfp100, 14 x 14 mm, 100-pin low-profil e quad flat package information figure 33. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline 1. drawing is not to scale. table 66. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 15.800 16.000 16.200 0.6220 0.6299 0.6378 d1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e )$%.4)&)#!4)/. 0). '!5'%0,!.% mm 3%!4).'0,!.% $ $ $ % % % + ccc # #         ,?-%?6 ! ! ! , , c b !
package information stm32l162xc/c-a 116/128 docid026175 rev 4 figure 34. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint 1. dimensions are in millimeters. d3 - 12.000 - - 0.4724 - e 15.800 16.000 16.200 0.6220 0.6299 0.6378 e1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 0.0 3.5 7.0 0.0 3.5 7.0 ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 66. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                069
docid026175 rev 4 117/128 stm32l162xc/c-a package information 127 marking of engineering samples the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. figure 35. lqfp100, 14 x 14 mm, 100-pin lo w-profile quad flat package top view example 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity 06y9 5hylvlrqfrgh 3urgxfwlghqwlilfdwlrq  'dwhfrgh 3lq lqghqwlilhu 670/ 9&7$5 < ::
package information stm32l162xc/c-a 118/128 docid026175 rev 4 7.3 lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package information figure 36. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline 1. drawing is not to scale. table 67. lqfp64, 10 x 10 mm 64-pin lo w-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d - 12.000 - - 0.4724 - d1 - 10.000 - - 0.3937 - d3 - 7.500 - - 0.2953 - e - 12.000 - - 0.4724 - e1 - 10.000 - - 0.3937 - :b0(b9 $ $ $ 6($7,1*3/$1( fff & e & f $ / / . ,'(17,),&$7,21 3,1 ' ' ' h         ( ( ( *$8*(3/$1( pp
docid026175 rev 4 119/128 stm32l162xc/c-a package information 127 figure 37. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint 1. dimensions are in millimeters. e3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - k 03.57 03.57 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 67. lqfp64, 10 x 10 mm 64-pin low-pr ofile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                 aic
package information stm32l162xc/c-a 120/128 docid026175 rev 4 marking of engineering samples the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. figure 38. lqfp64 10 x 10 mm, 64-pin low-profile quad flat package top view example 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity 06y9 5hylvlrqfrgh 670/ 3urgxfwlghqwlilfdwlrq  'dwhfrgh <:: 3lq lqghqwlilhu 5&7$ 5
docid026175 rev 4 121/128 stm32l162xc/c-a package information 127 7.4 ufbga132, 7 x 7 mm, 132-ball ul tra thin, fine-pitch ball grid array package information figure 39. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package outline 1. drawing is not to scale. table 68. ufbga132, 7 x 7 mm, 132-ball ul tra thin, fine-pitch ball grid array package mechanical data symbol millimeters inches (1) min typ max min typ max a 0.460 0.530 0.600 0.0181 0.0209 0.0236 a1 0.050 0.080 0.110 0.0020 0.0031 0.0043 a2 0.400 0.450 0.500 0.0157 0.0177 0.0197 a3 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.170 0.280 0.330 0.0067 0.0110 0.0130 d 6.950 7.000 7.050 0.2736 0.2756 0.2776 e 6.950 7.000 7.050 0.2736 0.2756 0.2776 e - 0.500 - - 0.0197 - f 0.700 0.750 0.800 0.0276 0.0295 0.0315 8)%*$b$*b0(b9 6hdwlqjsodqh $ $ h = = ' $ hhh & $ % iii ?e edoov ? ? 0 0 0 ( 7239,(: %277209,(:   h $ $ & $ % & $edoo lghqwlilhu $edoo lqgh[duhd e ' ( ggg & $
package information stm32l162xc/c-a 122/128 docid026175 rev 4 figure 40. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pit ch ball grid array package recommended footprint ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. values in inches are converted from mm and rounded to 4 decimal digits. table 68. ufbga132, 7 x 7 mm, 132-ball ul tra thin, fine-pitch ball grid array package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max 3lwfk pp 'sdg pp 'vp ppw\s ghshqgvrq wkhvroghupdvnuhjlvwudwlrq wrohudqfh 6roghusdvwh ppdshuwxuhgldphwhu 'sdg 'vp dl
docid026175 rev 4 123/128 stm32l162xc/c-a package information 127 marking of engineering samples the following figure gives an example of topside marking orientation versus ball a1 identifier location. figure 41. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pit ch ball grid array package top view example 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity 06y9 5hylvlrqfrgh 3urgxfwlghqwlilfdwlrq  'dwhfrgh %doo$ lqghqwlilhu 4&+ < :: 5 670/
package information stm32l162xc/c-a 124/128 docid026175 rev 4 7.5 thermal characteristics the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max ja ) where: ? t a max is the maximum ambient temperature in c, ? ja is the package junction-to-ambient thermal resistance, in c/w, ? p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), ? p int max is the product of i dd and v dd , expressed in watts. th is is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = (v ol i ol ) + ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. figure 42. thermal resistance suffix 6 table 69. thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient lqfp144 - 20 x 20 mm / 0.5 mm pitch 40 c/w thermal resistance junction-ambient ufbga132 - 7 x 7 mm 60 thermal resistance junction-ambient lqfp100 - 14 x 14 mm / 0.5 mm pitch 43 thermal resistance junction-ambient lqfp64 - 10 x 10 mm / 0.5 mm pitch 46 069 &}?]v?d:ed:u? h&'???uu >y&we?euu >y&wee???uu >y&we?uu 3' p:             7hpshudwxuh ?&
docid026175 rev 4 125/128 stm32l162xc/c-a package information 127 figure 43. thermal resistance suffix 7 7.5.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org. 06y9 &}?]v?d:ed:u? h&'???uu >y&we?euu >y&wee???uu >y&we?uu 3' p:             7hpshudwxuh ?&
part numbering stm32l162xc/c-a 126/128 docid026175 rev 4 8 part numbering for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest st sales office. table 70. stm32l162xc/c-a ordering information scheme example: stm32 l 162 r c t 6 a d tr device family stm32 = arm-based 32-bit microcontroller product type l = low-power device subfamily 162: devices with lcd pin count r = 64 pins v = 100 pins z = 144 pins q = 132 pins flash memory size c = 256 kbytes of flash memory package h = bga t = lqfp temperature range 6 = industrial temperature range, ?40 to 85 c 7 = industrial temperature range, ?40 to 105 c identification code a = proprietary identification code blank = no proprietary identification code options no character = v dd range: 1.8 to 3.6 v and bor enabled d = v dd range: 1.65 to 3.6 v and bor disabled packing tr = tape and reel no character = tray or tube
docid026175 rev 4 127/128 stm32l162xc/c-a revision history 127 9 revision history table 71. document revision history date revision changes 21-may-2014 1 initial release 12-sept-2014 2 updated communication interfaces section including i2s characteristics. updated dmips features in cove r page and description section. updated -40c to 105c temperature range. updated flash switched on & off modes updated peripheral consumption table. updated maximum source impedance rain max. 02-mar-2015 3 updated section 7: package information with new package device marking. updated figure 7: memory map . 18-mar-2016 4 updated table 16: embedded internal reference voltage temperature coefficient at 100ppm/c. and table note 3: ?guaranteed by design? changed by ?guaranteed by characterization results?. updated table 63: comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/c. updated table 8: stm32l162xc/ c-a pin definitions adc inputs. updated cover page putting eight spis in the peripheral communication interface list. updated table 2: ultra-low-power st m32l162xc/c-a device features and peripheral counts spi and i2s lines. updated table 39: esd absolute maximum ratings cdm class. updated all the notes, removing ?not tested in production?. updated table 10: voltage characteristics adding note about v ref- pin. updated table 5: functionalities depending on the working mode (from run/active down to standby) lsi and lse functionalities putting ?y? in standby mode. removed note 1 below figure 2: clock tree .
stm32l162xc/c-a 128/128 docid026175 rev 4 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2016 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of STM32L162QCH6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X